There have been many reports concerning the role of dietary fiber in lowering postprandial serum glucose, and the main mechanism was regarded as the viscosity of different dietary fibers in hampering diffusion of glucose and postponing absorption and digestion of carbohydrates. In this paper, two kinds of water-insoluble dietary fibers, water-insoluble dietary fiber of wheat bran and enzyme-resistant starch of maize amylose, and four kinds of water-soluble dietary fibers, water-soluble dietary fiber of wheat bran, carboxymethyl cellulose, guar gum, and xanthan gum, were used to investigate their postprandial serum glucose lowering mechanism in vitro. The results showed that these dietary fibers lowered postprandial serum glucose levels at least by three mechanisms. First, dietary fibers increase the viscosity of small intestine juice and hinder diffusion of glucose; second, they bind glucose and decrease the concentration of available glucose in the small intestine; and, third, they retard alpha-amylase action through capsuling starch and the enzyme and might directly inhibit the enzyme. All of these decreased the absorption rate of glucose and the concentration of postprandial serum glucose.
Classic methods for the synthesis of allenes usually introduce only one functional group into products. In this review, we highlight the recent advances and perspectives in the synthesis of allenes by transition metal‐catalyzed 1,4‐functionalization of unactivated 1,3‐enynes.
A novel enantioselective copper-catalyzed trifluoromethylalkynylation of styrenes, proceeding through a radical relay process, is described herein, which affords structurally diverse CF-containing propargylic compounds in good yield with excellent enantioselectivities under very mild conditions. In addition, the reaction features wide substrate scope and good functional group tolerance. Moreover, the trifluoromethylalkynylated products can be easily converted into synthetically useful chiral terminal alkynes, allenes, Z-alkenes, as well as CF-modified nonsteroidal anti-inflammatory drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.