A new bioconjugate nanostructure was constructed by using photosensitizer-incorporated mixed lipid-coated gold nanocages for two-photon photothermal/photodynamic cancer therapy in vitro with high efficiency. Scanning electron microscopic and transmission electron microscopic images reveal that the precursors and bioconjugate nanostructure as-prepared are narrowly dispersed and possess uniform morphologies. The relevant energy dispersion X-ray analysis and UV-vis spectra indicate that the bioconjugate nanostructure above was assembled successfully and has a strong absorption in the near-infrared region. Fluorescence and electronic spin resonance results show that the gold nanocage in the bioconjugate nanostructure can dramatically quench the photosensitizer and inhibit the production of singlet oxygen, which is supposed to alleviate the photosensitizers' unwanted side effects originating from their nontargeted distribution. We have demonstrated that as the nanocomplex is internalized by cancer cells, under two-photon illumination, photodynamic anticancer treatment is dramatically enhanced by the photothermal effect.
We have performed fundamental assays of gold nanocages (AuNCs) as intrinsic inorganic photosensitizers mediating generation of reactive oxygen species (ROS) by plasmon-enabled photochemistry under near-infrared (NIR) one/two-photon irradiation. We disclosed that NIR light excited hot electrons transform into either ROS or hyperthermia. Electron spin resonance spectroscopy was applied to demonstrate the production of three main radical species, namely, singlet oxygen ((1)O2), superoxide radical anion (O2(-•)), and hydroxyl radical ((•)OH). The existence of hot electrons from irradiated AuNCs was confirmed by a well-designed photoelectrochemical experiment based on a three-electrode system. It could be speculated that surface plasmons excited in AuNCs first decay into hot electrons, and then the generated hot electrons sensitize oxygen to form ROS through energy and electron transfer modes. We also compared AuNCs' ROS generation efficiency in different surface chemical environments under one/two-photon irradiation and verified that, compared with one-photon irradiation, two-photon irradiation could bring about much more ROS. Furthermore, in vitro, under two-photon irradiation, ROS can trigger mitochondrial depolarization and caspase protein up-regulation to initiate tumor cell apoptosis. Meanwhile, hyperthermia mainly induces tumor cell necrosis. Our findings suggest that plasmon-mediated ROS and hyperthermia can be facilely regulated for optimized anticancer phototherapy.
Super‐small nanoclusters may intrinsically trigger specific molecular pathway for disease treatment in vitro/vivo. To prove the hypothesis the super‐small nanoclusters, e.g., Au clusters, are directly used to treat rheumatoid arthritis (RA) in vitro/vivo. RA is a chronic autoimmune disease that is characterized by the inflammation of joints and the unreversible destruction of the cartilage/bone. Au clusters significantly suppress lipopolysaccharide (LPS)‐induced proinflammatory mediator production in the murine macrophage cell line by inhibiting the signaling pathways that regulate the major proinflammatory mediator genes. In preclinical rat RA studies, Au clusters strongly prevent type II collagen‐induced rat RA without systemic side effects. Compared with the clinical first‐line anchored anti‐RA drug, methotrexate, Au clusters equally inhibit inflammation in vivo. Type II collagen‐induced rat RA is characterized with the destruction of cartilage/bone; treatment with Au clusters reverses the destruction of cartilage/bone to its normal state. This is because Au clusters directly inhibit receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclast differentiation and function through the downregulation of osteoclast‐specific genetic marker expression. However the methotrexate almost has no positive effect for this key issue in rat RA therapy. These data prove that the super‐small nanoclusters, e.g., Au clusters, could be a novel candidate nanodrug for RA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.