Deep Q-Network (DQN), as one type of deep reinforcement learning model, targets to train an intelligent agent that acquires optimal actions while interacting with an environment. The model is well known for its ability to surpass professional human players across many Atari 2600 games. Despite the superhuman performance, in-depth understanding of the model and interpreting the sophisticated behaviors of the DQN agent remain to be challenging tasks, due to the long-time model training process and the large number of experiences dynamically generated by the agent. In this work, we propose DQNViz, a visual analytics system to expose details of the blind training process in four levels, and enable users to dive into the large experience space of the agent for comprehensive analysis. As an initial attempt in visualizing DQN models, our work focuses more on Atari games with a simple action space, most notably the Breakout game. From our visual analytics of the agent's experiences, we extract useful action/reward patterns that help to interpret the model and control the training. Through multiple case studies conducted together with deep learning experts, we demonstrate that DQNViz can effectively help domain experts to understand, diagnose, and potentially improve DQN models.
Generative models bear promising implications to learn data representations in an unsupervised fashion with deep learning. Generative Adversarial Nets (GAN) is one of the most popular frameworks in this arena. Despite the promising results from different types of GANs, in-depth understanding on the adversarial training process of the models remains a challenge to domain experts. The complexity and the potential long-time training process of the models make it hard to evaluate, interpret, and optimize them. In this work, guided by practical needs from domain experts, we design and develop a visual analytics system, GANViz, aiming to help experts understand the adversarial process of GANs in-depth. Specifically, GANViz evaluates the model performance of two subnetworks of GANs, provides evidence and interpretations of the models' performance, and empowers comparative analysis with the evidence. Through our case studies with two real-world datasets, we demonstrate that GANViz can provide useful insight into helping domain experts understand, interpret, evaluate, and potentially improve GAN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.