Orosomucoid 1-like 3 (ORMDL3) gene was strongly linked with the development of asthma in genetic association studies, and its expression could be significantly induced by allergen in airway epithelial cells of mice. However, the expression mechanism of ORMDL3 was still unclear. Here we have identified and characterized the mouse ORMDL3 gene promoter. Deletion constructs of the 5′ flanking region were fused to a luciferase reporter gene. After transient transfection in mouse fibroblast cell line NIH3T3, a CRE (−27/−20) binding CREB was identified in the core promoter region. Deletion or mutation of the CRE consensus sequence resulted in a significant loss of the promoter activity. EMSA and ChIP assays demonstrated the binding of CREB to the core promoter. Knocking down endogenous CREB led to a reduction in ORMDL3 expression. Conversely, overexpression of CREB up-regulated ORMDL3 expression. Moreover, forskolin, a PKA activator, could facilitate the phosphorylation of CREB, which in turn heightens ORMDL3 expression. H-89, a PKA-specific inhibitor, could significantly inhibit ORMDL3 expression. This study delineates the characterization of mouse ORMDL3 gene promoter and shows signaling pathway cAMP/PKA/CREB plays an important role in regulating ORMDL3 expression, which will be helpful for future animal model studies regarding the regulation or function of ORMDL3 gene.
All-trans retinoic acid (ATRA) is an active metabolite of Vitamin A, it shows protective effects on asthma, including maintains airway epithelial integrity, inhibits asthma effector cells differentiation, modulates immune response, et al. However, the promoting effect of ATRA on Th2 response has restricted the clinical application of ATRA in asthma treatment. ORMDL3 is a candidate gene of childhood onset asthma, and high-transcript of ORMDL3 is associated with the development of asthma. Here we show that ATRA increases ORMDL3 production in vitro via inducing PKA-dependent CREB phosphorylation which in turn binds to the CRE element in promoter region of ORMDL3 and initiates ORMDL3 transcription. This finding is in consistent with the previous reports that ATRA could regulate target genes without the presence of retinoic acid response element (RARE) in promoter region but through other signals such as PKA/CREB. Nevertheless, in the present study, the traditional signal pathway of ATRA, retinoic acid receptor (RAR) signal transduction pathway, indirectly modulated ORMDL3 expression. RAR-α agonist (Am-80) increased ORMDL3 production even though there was no RARE in ORMDL3 promoter, introns or 3′-downstream region. Besides, the signal of RAR might differ from that of ATRA since Am-80 failed to induce CREB activation. In conclusion, our data indicate that ATRA facilitates ORMDL3 production probable through PKA/CREB, and this may be a starting point for more detailed mechanism researches on ATRA and asthma.
Edited by W. Ellmeier, an E3 ubiquitin ligase, is a critical factor in maintaining airway immune tolerance. However, the association of Cbl-b with ORMDL3 for asthma is unclear. Here, we show that expression of ORMDL3 is significantly increased and shows a strong linear correlation with decreased Cbl-b in the peripheral blood of recurrent wheeze patients. To elucidate the molecular mechanisms underlying this correlation, we identified that Cbl-b suppressed the transcriptional activity and mRNA expression of ORMDL3 in vivo. Further investigation showed that phosphorylation of signal transducer and activator of transcription 6 (STAT6) was induced by interleukin 4 bound to the ORMDL3 promoter, while Cbl-b reduced the phosphorylation of STAT6. Our results show that Cbl-b suppresses human ORMDL3 expression through STAT6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.