Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2b-hydroxylation: a larger class of C 19 GA2oxs and a smaller class of C 20 GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C 20 GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C 20 GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C 20 GA2oxs were found to cause less severe GA-defective phenotypes than C 19 GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C 20 GA2oxs.
Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1-2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome. T-DNA was preferentially ( approximately 80%) integrated into genic regions. A total of 19,000 FSTs pooled from this and another T-DNA tagged population were analyzed and compared with 18,000 FSTs from a Tos17 tagged population. There was difference in preference for integrations into genic, coding, and flanking regions, as well as repetitive sequences and centromeric regions, between T-DNA and Tos17; however, T-DNA integration was more evenly distributed in the rice genome than Tos17. Our T-DNA contains an enhancer octamer next to the left border, expression of genes within genetics distances of 12.5 kb was enhanced. For example, the normal height of a severe dwarf mutant, with its gibberellin 2-oxidase (GA2ox) gene being activated by T-DNA, was restored upon GA treatment, indicating GA2ox was one of the key enzymes regulating the endogenous level of GA. Our T-DNA also contains a promoterless GUS gene next to the right border. GUS activity screening facilitated identification of genes responsive to various stresses and those regulated temporally and spatially in large scale with high frequency. Our mutant population offers a highly valuable resource for high throughput rice functional analyses using both forward and reverse genetic approaches.
SummaryA major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2‐oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10–30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.
To determine whether chloroplast RNA polymerase will accurately terminate transcription in vitro, we have fused the spinach chloroplast rbcL promoter to the 3' end of the rbcL gene as well as to various factor independent transcription terminators from E. coli. Transcription of the rbcL minigene did not result in production of the expected 265 nucleotide RNA. However, the spinach chloroplast RNA polymerase did terminate transcription with varying efficiency at the thra, rrnB, rrnC and gene 32 terminators. The most efficient transcription termination was observed for the threonine attenuator. For each of the prokaryotic terminators, the chloroplast enzyme ceased transcription at essentially the same position as the E. coli RNA polymerase. These data indicate that the transcription termination process in chloroplasts has some features in common with the mechanism used in prokaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.