In order to achieve advanced nitrogen removal from landfill leachate without the addition of external carbon sources, a Sequencing Batch Reactor (SBR) and a Sequencing Biofilm Batch Reactor (SBBR) were proposed for the treatment of actual landfill leachate with ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentrations of 1000 ± 100 mg/L and 4000 ± 100 mg/L, respectively. The operating modes of both systems are anaerobic–aerobic–anoxic. After 110 days of start-up and biomass acclimation, the effluent COD and the total nitrogen (TN) of the two systems were 650 ± 50 mg/L and 20 ± 10 mg/L, respectively. The removal rates of COD and total nitrogen could reach around 85% and above 95%, respectively. Therefore, advanced nitrogen removal was implemented in landfill leachate without adding any carbon sources. After the two systems were acclimated, nitrogen removing cycles of SBR and SBBR were 24 h and 20 h, respectively. The nitrogen removing efficiency of SBBR was improved by 16.7% in comparison to SBR. In the typical cycle of the two groups of reactors, the nitrification time of the system was the same, which was 5.5 h, indicating that although the fiber filler occupied part of the reactor space, it had no significant impact on the nitrification performance of the system. At the end of aeration, the internal carbon source content of sludge of SBBR was equivalent to that of the SBR system. However, the total nitrogen concentration of SBBR was only 129 mg/L, which is 33.8% lower than that of SBR at 195 mg/L. The main reason was that biofilm enhanced the simultaneous nitrification and denitrification (SND) effect of the system.
To improve the efficiency of nitrogen removal from pharmaceutical wastewater, wastewater from traditional Chinese medicine was treated in an anaerobic sequencing batch reactor (ASBR) combined with a modified sequencing batch biofilm reactor (SBBR). The chemical oxygen demand (COD) and total nitrogen (TN) contents were 3,750 ± 50 mg/L and 210 ± 10 mg/L, respectively. After 99 days of start-up and domestication, the COD, NH4+-N, and TN contents in the effluent were 230 ± 10 mg/L, 1 ± 0.5 mg/L, and 5 ± 3 mg/L, respectively, and the removal efficiencies reached more than 93.5, 99, and 96%, respectively. Among these results, the COD removal efficiency in traditional Chinese medicine wastewater with an ASBR reached more than 85%, and the effluent and raw water were mixed to adjust the C/N ratio in the SBBR influent. The initial operation mode of the improved SBBR was anaerobic–aerobic–anoxic. When the C/N ratio in the influent was adjusted to 5, the simultaneous nitrification and denitrification (SND) in the aerobic section was gradually enhanced, and the endogenous denitrification (ED) in the anoxic section gradually decreased. In conclusion, deep denitrification of the system was achieved only through SND, and the running time of the cycle was shortened from the initial 24 to 4.6 h. High-throughput sequencing analysis showed that the relative abundances of Bacteroidetes and Proteobacteria in the system were 39.69 and 37.34%, respectively. The content of Firmicutes with denitrification in the system was also high, accounting for 5.17%. At the genus level, the bacteria with denitrification functions in the system were mainly Thauera and unidentified_Sphingobacteriales, accounting for 5.67 and 1.66% of the system, respectively. In addition, there was heterotrophic nitrification–aerobic denitrification (HN-AD) activated in the system, including Denitratisoma, Paracoccus, and Pseudomonas. The total relative abundance of these bacteria was 0.612%. Their existence may be one of the reasons for the good effect of SND in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.