Background: Statins, a family of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase inhibitors, are being investigated for the therapy and prevention of cancers. Here we aimed to investigate the effects of simvastatin on chronic myelogenous leukemia (CML) cells in vitro and in vivo, and to elucidate the mechanisms. Methods: Cell proliferation and cell cycle were measured after K562 cells were incubated with simvastatin, and differentially expressed genes were determined by oligonucleotide microarray. Changes of 2 genes obtained by oligonucleotide microarray were validated by real-time RT-PCR, and immunohistochemistry was performed to determine expression of proliferating cell nuclear antigen (PCNA). Finally, a xenograft tumor model was constructed to evaluate the effects of simvastatin in vivo. Results: Simvastatin could inhibit K562 cell proliferation, and the inhibition rate was approximately 30% after treatment with 20 µmol/l simvastatin for 48 h. Cell cycle was arrested in G1 phase, as shown by flow cytometry results. Fifteen downregulated, 9 upregulated cell cycle-related genes and decreased PCNA protein were observed in the presence of simvastatin. Furthermore, simvastatin exhibited impairment of xenograft tumor growth in nude mice and also blocked cell cycle in G1 phase. Conclusion: Simvastatin can inhibit CML cell proliferation in vitro and in vivo, and its mechanisms might be involved in cell cycle regulation.
Statins are being widely used for the therapy and prevention of several types of tumors, including human chronic myelogenous leukemia, but the underlying molecular mechanisms still remain unknown. Therefore, inhibition of cell proliferation, apoptosis and involved molecules were investigated in K562 cells after incubation with simvastatin.The results showed that simvastatin diminished K562 cell proliferation and induced apoptosis. At the same time, the level of reactive oxygen species (ROS) and intracellular calcium concentration increased. Furthermore, nitric oxide (NO) content and inducible NO synthase (iNOS) mRNA expression were significantly higher in the simvastatin-treated group than in the corresponding control group. The elevated ROS level and intracellular calcium concentration, enhanced mRNA expression of iNOS and total NO content might be responsible for the apoptotic and anti-proliferative effects of simvastatin in K562 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.