Poly (L-lactide) (PLLA) blends with various nucleators were prepared by melt processing. The effect of different nucleators on the crystallization behavior and heat resistance as well as thermomechanical properties of PLLA was studied systematically by differential scanning calorimetry, X-ray diffraction, heat deflection temperature tester, and dynamic mechanical analysis. It was found that poly(D-lactide), talcum powder (Talc), a multiamide compound (TMC-328, abbreviated as TMC) can significantly improve the crystallization rate and crystallinity of PLLA, thus improving thermal-resistant property. The heat deflection temperature of nucleated PLLA can be as high as 1508C. The storage modulus of nucleated PLLA is higher than that of PLLA at the temperature above T g of PLLA. Compared with other nucleating agents, TMC was much more efficient at enhancing the crystallization of PLLA and the PLLA containing TMC showed the best heat resistance.
Abstract:A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW) 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA) from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.
In coal mines, underground reservoir systems can increase the availability of water and are an effective technical approach for the protection and utilization of water resources. The stability of coal pillar dams is the key factor in the safety and stability of these underground water storage systems. However, coal pillar dams must operate in complex environments that combine dynamic-static superimposed stress fields and water immersion; moreover, coal pillar dams subjected to both stress and seepage are more susceptible to damage and even collapse. In this study, a seepage-stress coupling model of a coal pillar dam was constructed using the Universal Distinct Element Code (UDEC) simulation software. This model provides a platform for analyzing the characteristics of fracture development in surrounding rock in active mines and the coupled development of crack fields and seepage fields in coal pillar dams. Methods were developed for (1) calculating the water content for the coal pillar dam numerical simulation model and (2) reducing water immersion weakening. The maximum seepage width of a coal pillar dam subjected to water immersion was obtained, and a damage and failure evolution mechanism for coal pillar dams experiencing flooding was developed. The results provide a scientific basis for enhancing the stability control of coal pillar dams and are of great significance for realizing water conservation in coal mines.
With the expansion of the new energy vehicle market, electric vehicle batteries (EVBs) have entered a massive retirement wave. The strategic level of facility location and configuration decisions and the tactical level of multi-product flow and multi-technology selection decisions have been integrated into a sustainable reverse logistics network (SRLN). In this paper, we considered multiple kinds of waste electric vehicle batteries (WEVBs) with multiple recycling technology and constructed a multi-level SRLN model for WEVBs with the objectives of minimum economic costs and minimum carbon emissions. To solve this model, fuzzy set theory was applied to the equivalence transformation of constraints, non-interactive and interactive methods were used to solve the multi-objective planning (MOP), and interactive fuzzy programming with priority control was proposed to find the global optimal solution for this model. Finally, numerical experiments demonstrated the feasibility and effectiveness of the proposed model and solution method. The experimental results show that the SRLN model considering carbon emissions can significantly reduce carbon emissions of the network through a slight increase in the initial network construction cost, thus effectively balancing both economic and environmental objectives. In the non-interactive solution, the Lp-metric method has a lower deviation index than the weighted sum method; in the interactive solution, the priority control method proposed in this paper outperforms the TH method in terms of the number of practical solutions and CPU time and shows strong performance in searching and finding optimal solutions. The proposed model and method can provide the theoretical basis and technical support for a WEVB SRLN under the limited information uncertainty environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.