Mutations in the Kelch domain of the K13 gene (PF3D7_1343700) were previously associated with artemisinin resistance in Plasmodium falciparum . This study followed the dynamics of the K13 polymorphisms in P. falciparum parasites from the China-Myanmar border area obtained in 2007–2016, and their in vitro sensitivities to artesunate (AS) and dihydroartemisinin (DHA). The 50% effective concentration (EC 50 72h ) values of 133 culture-adapted field isolates to AS and DHA, measured by the conventional 72 h SYBR Green I-based assay, varied significantly among the parasites from different years; all were significantly higher than that of the reference strain 3D7. Compared with parasites from 2007 to 2008, ring survival rates almost doubled in parasites obtained in later years. Sequencing the full-length K13 genes identified 11 point mutations present in 85 (63.9%) parasite isolates. F446I was the predominant (55/133) variant, and its frequency was increased from 17.6% (3/17) in 2007 to 55.9% (19/34) in 2014–2016. No wild-type (WT) Kelch domain sequences were found in the 34 samples obtained from 2014 to 2016. In the 2014–2016 samples, a new mutation (G533S) appeared and reached 44.1% (15/34). Collectively, parasites with the Kelch domain mutations (after amino acid 440) had significantly higher ring survival rates than the WT parasites. Individually, F446I, G533S and A676D showed significantly higher ring survival rates than the WT. Although the drug sensitivity phenotypes measured by the RSA 6h and EC 50 72h assays may be intrinsically linked to the in vivo clinical efficacy data, the values determined by these two assays were not significantly correlated. This study identified the trend of K13 mutations in parasite populations from the China-Myanmar border area, confirmed an overall correlation of Kelch domain mutations with elevated ring-stage survival rates, and emphasized the importance of monitoring the evolution and spread of parasites with reduced artemisinin sensitivity along the malaria elimination course.
BackgroundImported cases of infectious disease provide invaluable information about epidemiological conditions abroad, and should guide treatment decisions at home and abroad. Here, we examined cases of malaria imported from Africa to China for mutations eroding the efficacy of sulfadoxine-pyrimethamine (SP), sometimes used as an intermittent preventive treatment during for pregnant women and infants.MethodsA total of 208 blood samples were collected from P. falciparum-infected workers who had returned from Western and Central Africa to Guangxi Province Frequency distribution. Samples were analyzed for the mutations in dhfr and dhps genes by PCR -sequencing. The prevalence of dhfr and dhps polymorphisms was analyzed. Among the isolates, polymorphisms were detected in mutants N51I, C59R, S108N and I164L of Pfdhfr and I431V, S436 A/F, A437G, K540 E/N, A581G and A613T of pfdhps.ResultsMutations promoting drug resistance were widespread in this cohort. For pfdhfr and pfdhps, wild types were equally rare among patients returned from Western Africa and Central Africa. A triple-mutant dhfr haplotype was most prevalent (>70%). We report for the first time mutation I164L-dhfr and I431V-dhps in Ghana, and for the first time we found A581G to exceed a clinically-relevant threshold that may counter-indicate current clinical practices. For Pfdhps, the double-mutant IAGKAA was high prevalent haplotype in Ghana, Western Africa. The single-mutant ISGKAA was a majority haplotype in Cameroon. Alarmingly, a “super resistance” quintuple mutant was detected, for the first time, in parasites of West African origin (defined by IAGKAA/IRNI in combination with pfdhps 581G and dhfr I164L). This may limit the efficacy of this drug combination for even intermittent clinical applications.ConclusionsThese data are cause for great concern and call for continued surveillance of the efficacy of SP in source and recipient populations, and should be considered when developing treatment policy for imported malaria cases in China and elsewhere.
Background Plasmodium vivax transmission in West Africa, dominant for the Duffy-negative blood group, has been increasingly recognized from both local residents as well as international travelers who contracted P. vivax malaria there. However, the relapsing pattern and sensitivity to antimalarial treatment of P. vivax strains originated from this region are largely unknown. There is evidence that the efficacy of primaquine for radical cure of relapsing malaria depends on host factors such as the hepatic enzyme cytochrome P450 (CYP) 2D6. Case presentation A 49-year-old Chinese man was admitted to the Shanglin County Hospital in Guangxi Province, China, on December 19, 2016, 39 days after he returned from Ghana, where he stayed for one and a half years. He was diagnosed by microscopy as having uncomplicated P. vivax malaria. Treatment included 3 days of intravenous artesunate (420 mg total), and 3 days of chloroquine (1550 mg total), and 8 days of primaquine (180 mg total). Although parasites and symptoms were cleared rapidly and he was malaria-negative for almost two months, he suffered four relapses with relapse intervals ranging from 58 to 232 days. The last relapse occurred at 491 days from his first vivax attack. For the first three relapses, he was treated similarly with chloroquine and primaquine, sometimes supplemented with additional artemisinin combination therapies (ACTs). For the last relapse, he was treated with intravenous artesunate, 3 days of an ACT, and 7 days of azithromycin, and had remained healthy for 330 days. Molecular studies confirmed P. vivax infections for all the episodes. Although this patient was diagnosed to have normal glucose-6-phosphate dehydrogenase (G6PD) activity, his CYP2D6 genotype corresponded to a *2A/*36 allele variant suggesting of an impaired primaquine metabolizer phenotype. Conclusions This clinical case suggests that P. vivax malaria originating from West Africa may produce multiple relapses extending beyond one year. The failures of primaquine as an anti-relapse therapy may be attributed to the patient’s impaired metabolizer phenotype of the CYP2D6. This highlights the importance of knowing the host G6PD and CYP2D6 activities for effective radical cure of relapsing malaria by primaquine.
Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China–Myanmar border during 2007–2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014–2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.
Background: The spread of drug resistance has seriously impacted the effective treatment of infection with the malaria parasite, Plasmodium falciparum. Continuous monitoring of molecular marker polymorphisms associated with drug resistance in parasites is essential for malaria control and elimination efforts. Our study describes mutations observed in the resistance genes Pfkelch13, Pfcrt, and Pfmdr1 in imported malaria and identifies additional potential drug resistance-associated molecular markers.Methods: Chinese patients infected in Africa with P. falciparum were treated with intravenous (IV) injections of artesunate 240–360 mg for 3–5 days while hospitalized and treated with oral dihydroartemisinin-piperaquine (DHP) for 3 days after hospital discharge. Blood samples were collected and PCR sequencing performed on genes Pfkelch13, Pfcrt, and Pfmdr1 from all isolates.Results: We analyzed a total of 225 patients from Guangxi, China with P. falciparum malaria acquired in Africa between 2016 and 2018. All patients were cured completely after treatment. The F446I mutation of the Pfkelch13 gene was detected for the first time from samples of West African P. falciparum, with a frequency of 1.0%. Five haplotypes of Pfcrt that encode residues 72–76 were found, with the wild-type CVMNK sequence predominating (80.8% of samples), suggesting that the parasites might be chloroquine sensitive. For Pfmdr1, N86Y (13.1%) and Y184F (58.8%) were the most prevalent, suggesting that artemether-lumefantrine may not, in general, be a suitable treatment for the group.Conclusions: For the first time, this study detected the F446I mutation of the Pfkelch13 gene from Africa parasites that lacked clinical evidence of resistance. This study provides the latest data for molecular marker surveillance related to antimalarial drug resistance genes Pfkelch13, Pfcrt, and Pfmdr1 imported from Africa, in Guangxi, China from Chinese migrate workers.Clinical Trial Registration: ChiCTROPC17013106.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.