In this paper, we have experimentally demonstrated the feasibility of a LMS-Volterra based joint MIMO equalizer in multiband super-Nyquist carrierless amplitude phase modulation visible light communication system. To obtain higher spectrum efficiency, overlapping between different sub-bands is introduced in this experiment. By using joint MIMO equalizer, an aggregate data rate of 1.26 Gb/s is successfully achieved in 1-m indoor free space transmission with the BER below the 7% FEC limit of 3.8 × 10. To our best knowledge, this is the first time that our proposed joint MIMO equalizer is used to equalize multiband super-Nyquist data in VLC system.
This paper first brings a single receiver multiple-input-multiple-output (SR-MIMO) model to realize the space multiplexing in the visible light communication (VLC) system. The signals from two transmitters are super-imposed in the receiver thus to realize a specially superposed modulation. Depending on the power ratio between two transmitters, various superposed signal structures can be obtained. In order to separate the superposed signal, we design a novel detection algorithm which consists of the successive interference cancellation (SIC) and the look-up table (LUT). Extensive experiments demonstrate that a data rate of 1.5Gbit/s is achieved in the 1.3-m indoor line-of-sight (LOS) scenario with the bit error rates (BERs) are below the forward error correction (FEC) threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.