Noticeable differences between the vibrational (IR and Raman) spectra of neat H(2)O and D(2)O ice Ih are observed experimentally. Here, we employ our theoretical mixed quantum/classical approach to investigate these differences. We find reasonable agreement between calculated and experimental line shapes at both high and low temperatures. From understanding the structure of ice Ih and its vibrational exciton Hamiltonian, we provide assignments of the IR and Raman spectral features for both H(2)O and D(2)O ice Ih. We find that in H(2)O ice these features are due to strong and weak intermolecular coupling, not to intramolecular coupling. The differences between H(2)O and D(2)O ice spectra are attributed to the significantly stronger intramolecular coupling in D(2)O ice. Our conclusion for both H(2)O and D(2)O ice is that the molecular symmetric and antisymmetric normal modes do not form a useful basis for understanding OH or OD stretch spectroscopy.
Infrared spectroscopy of the water OH stretch provides a sensitive probe of the local hydrogen-bonding structure and dynamics of water molecules. Previously, we have utilized a mixed quantum/classical model to calculate vibrational spectroscopic observables for bulk water, ice, the liquid/vapor interface, and small water clusters, as well as water interacting with ions and biological molecules. These studies rely on spectroscopic maps that relate the OH stretching frequency and transition dipole to the local environment around a water molecule. Our spectroscopic maps were parametrized based on water clusters taken from bulk water simulations; in this article, we test the robustness of these maps for water in nonbulk-liquid environments. We find that the frequency, transition dipole, and coupling maps work as well for the water surface, ice Ih, and the water hexamer as they do for liquid water. This suggests that these maps may be generally applied to study the vibrational spectroscopy of water in diverse, potentially heterogeneous environments.
We present a unified picture of how OH-stretch spectroscopy in water can be understood in terms of hydrogen bonding for the four systems listed in the title. To understand the strength, and hence OH-stretch frequency, of a hydrogen bond, it is crucial to consider the number of additional acceptor hydrogen bonds made by both the donor and acceptor molecules. This necessity for focusing on the hydrogen-bond environment of both donor and acceptor molecules follows from quantum chemical considerations and is related to the three-body interactions in water. Armed with this understanding we can make a detailed interpretation of the OH-stretch IR absorption spectrum of the cage conformer for HOD(D2O)5 and the imaginary part of the ssp OH-stretch sum-frequency spectrum of the surface of liquid D2O with dilute HOD.
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.
Hemodynamic conditions play a critical role in embryonic cardiovascular development, and altered blood flow leads to congenital heart defects. Chicken embryos are frequently used as models of cardiac development, with abnormal blood flow achieved through surgical interventions such as outflow tract (OFT) banding, in which a suture is tightened around the heart OFT to restrict blood flow. Banding in embryos increases blood pressure and alters blood flow dynamics, leading to cardiac malformations similar to those seen in human congenital heart disease. In studying these hemodynamic changes, synchronization of data to the cardiac cycle is challenging, and alterations in the timing of cardiovascular events after interventions are frequently lost. To overcome this difficulty, we used ECG signals from chicken embryos (Hamburger-Hamilton stage 18, ∼3 days of incubation) to synchronize blood pressure measurements and optical coherence tomography images. Our results revealed that, after 2 h of banding, blood pressure and pulse wave propagation strongly depend on band tightness. In particular, while pulse transit time in the heart OFT of control embryos is ∼10% of the cardiac cycle, after banding (35% to 50% band tightness) it becomes negligible, indicating a faster OFT pulse wave velocity. Pulse wave propagation in the circulation is likewise affected; however, pulse transit time between the ventricle and dorsal aorta (at the level of the heart) is unchanged, suggesting an overall preservation of cardiovascular function. Changes in cardiac pressure wave propagation are likely contributing to the extent of cardiac malformations observed in banded hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.