Cardiopulmonary resuscitation (CPR) must be interrupted for reliable rhythm analysis in current automatic external defibrillators because of artifacts produced by chest compressions. However, interruptions in CPR adversely affect the restoration of spontaneous circulation and survival. Suppressing CPR artifacts by digital signal processing techniques is a promising method to enable rhythm analysis during chest compressions, which would eliminate CPR interruptions for rhythm analysis. Although numerous methods have been developed to suppress CPR artifacts, the accuracy of rhythm analysis is still inadequate due to the residual artifact components in the filtered signal. This study proposes an enhanced adaptive filtering method to suppress CPR artifacts. A total of 183 shockable and 453 nonshockable segments of ECG signal, together with CPR-related reference signal, were extracted from 233 out of hospital cardiac arrest patients. The method was optimized on a training set with 85 shockable and 211 nonshockable segments, and evaluated on a testing set with 98 shockable and 242 nonshockable segments. Compared with artifact corrupted ECG signals, the signal-to-noise ratio (SNR) increased from -9.8 ± 12.5 to 11.2 ± 11.8 dB, and the accuracy was improved from 74.1% to 92.0% after filtering with the proposed method. Compared with the traditional adaptive filter, the SNR was improved by 1.7 dB and the accuracy was improved by 5.6 points. These results indicated that the proposed method could effectively suppress the chest compression related artifacts and improve the accuracy of rhythm analysis during uninterrupted CPR.
Background: Amplitude spectrum area (AMSA) calculated from ventricular fibrillation (VF) can be used to monitor the effectiveness of chest compression (CC) and optimize the timing of defibrillation.However, reliable AMSA can only be obtained during CC pause because of artifacts. In this study, we sought to develop a method for estimating AMSA during cardiopulmonary resuscitation (CPR) using only the electrocardiogram (ECG) waveform.Methods: Intervals of 8 seconds ECG and CC-related references, including 4 seconds during CC and an adjacent 4 seconds without CC, were collected before 1,008 defibrillation shocks from 512 out-of-hospital cardiac arrest patients. Signal quality was analyzed based on the irregularity of autocorrelation of VF. If signal quality index (SQI) was high, AMSA would be calculated from the original signal. Otherwise, CC-related artifacts would be constructed and suppressed using the least mean square filter from VF before calculation of AMSA. The algorithm was optimized using 480 training shocks and evaluated using 528 independent testing shocks.Results: Overall, CC resulted in lower SQI [0.15 (0.04-0.61) with CC vs. 0.75 (0.61-0.83) without CC, P<0.01] and higher .2) with CC vs. 7.2 (4.9-10.6) mVHz without CC, P<0.01] values.The predictive accuracy (49.2% vs. 66.5%, P<0.01) and area under the receiver operating characteristic curve (AUC) (0.647 vs. 0.734, P<0.01) were significantly decreased during CC. Using the proposed method, the estimated AMSA was 7.1 (5.0-15.2) mVHz, the predictive accuracy was 67.0% and the AUC was 0.713, which were all comparable with those calculated without CC.Conclusions: Using the signal quality-based artifact suppression method, AMSA can be reliably estimated and continuously monitored during CPR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.