Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1–5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6–8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm−2 at less than ±0.7 V, transconductances of 0.2–0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.
Here we report facile, high-yield synthetic access to the difluoro BTA building block, 4,7-bis(5-bromo-4-(2-hexyl-decyl)-thiophen-2-yl)-5,6-difluoro-2-(pentadecan-7-yl)-benzo[d]thiazole (BTAT-2f), for use in donor (D)–acceptor 1 (A1)–D–acceptor 2 (A2) polymers [D = bithiophene; A1 = BTA-2f; A2 = benzothiadiazole (BT) derivative] for organic solar cells (OSCs). Fine tuning of polymer optical and electronic properties is achieved by incrementally varying the A2 fluorination level. Bulk-heterojunction (BHJ) PBTATBT-4f:Y6 solar cells deliver a noteworthy power conversion (PCE) efficiency of 16.08% (V oc = 0.81 V; J sc = 27.25 mAcm–2; FF = 72.70%) without processing additives. In contrast, PBTATBT-2f:Y6 exhibits an irregular morphology and low PCE, ascribable to cocrystal formation-induced recombination, which is unprecedented for nonfullerene (NFA) OSCs. This result should be of guiding significance for future NFA design.
Non-fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk-heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA-based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A-DAD-A type NFAs (D = π-donor group and A = π-acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT-BO-L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π-π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA-cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short-circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.