Patch-based medical image registration has been well explored in recent decades. However, the patch fusion process can generate grid-like artifacts along the edge of patches for the following two reasons: firstly, in order to ensure the same size of input and output, zero-padding is used, which causes uncertainty in the edges of the output feature map during the feature extraction process; secondly, the sliding window extraction patch with different strides will result in different degrees of grid-like artifacts. In this paper, we propose an exponential-distance-weighted (EDW) method to remove grid-like artifacts. To consider the uncertainty of predictions near patch edges, we used an exponential function to convert the distance from the point in the overlapping regions to the center point of the patch into a weighting coefficient. This gave lower weights to areas near the patch edges, to decrease the uncertainty predictions. Finally, the dense displacement field was obtained by this EDW weighting method. We used the OASIS-3 dataset to evaluate the performance of our method. The experimental results show that the proposed EDW patch fusion method removed grid-like artifacts and improved the dice similarity coefficient superior to those of several state-of-the-art methods. The proposed fusion method can be used together with any patch-based registration model.
Magnetic resonance (MR) images often suffer from random noise pollution during image acquisition and transmission, which impairs disease diagnosis by doctors or automated systems. In recent years, many noise removal algorithms with impressive performances have been proposed. In this work, inspired by the idea of deep learning, we propose a denoising method named 3D-Parallel-RicianNet, which will combine global and local information to remove noise in MR images. Specifically, we introduce a powerful dilated convolution residual (DCR) module to expand the receptive field of the network and to avoid the loss of global features. Then, to extract more local information and reduce the computational complexity, we design the depthwise separable convolution residual (DSCR) module to learn the channel and position information in the image, which not only reduces parameters dramatically but also improves the local denoising performance. In addition, a parallel network is constructed by fusing the features extracted from each DCR module and DSCR module to improve the efficiency and reduce the complexity for training a denoising model. Finally, a reconstruction (REC) module aims to construct the clean image through the obtained noise deviation and the given noisy image. Due to the lack of ground-truth images in the real MR dataset, the performance of the proposed model was tested qualitatively and quantitatively on one simulated T1-weighted MR image dataset and then expanded to four real datasets. The experimental results show that the proposed 3D-Parallel-RicianNet network achieves performance superior to that of several state-of-the-art methods in terms of the peak signal-to-noise ratio, structural similarity index, and entropy metric. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.
In this paper, a vision-aided navigation method for aircraft is proposed. The road network is detected from ground scenes provided by down-looking camera. The road junctions are extracted and referenced. Based on the principle of camera calibration, the position of the aircraft can be estimated by the road junction matching pairs in image and digital map. It is then employed to fix the accumulative error of INS. In order to improve the matching efficiency, the property of road junction and the orientation and the height output of INS are used to reduce the searching space. The simulation results have verified its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.