Osteogenesis during bone modeling and remodeling is coupled with angiogenesis. A recent study shows that the specific vessel subtype, strongly positive for CD31 and Endomucin (CD31hiEmcnhi), couples angiogenesis and osteogenesis. We found that preosteoclasts secrete platelet derived growth factor-BB (PDGF-BB), inducing CD31hiEmcnhi vessels during bone modeling and remodeling. Mice with depletion of PDGF-BB in tartrate-resistant acid phosphatase positive (TRAP+) cell lineage (Pdgfb–/–) show significantly lower trabecular and cortical bone mass, serum and bone marrow PDGF-BB concentrations, and CD31hiEmcnhi vessels compared to wild-type mice. In the ovariectomized (OVX) osteoporotic mouse model, concentrations of serum and bone marrow PDGF-BB and CD31hiEmcnhi vessels are significantly decreased. Inhibition of cathepsin K (CTSK) increases preosteoclast numbers, resulting in higher levels of PDGF-BB to stimulate CD31hiEmcnhi vessels and bone formation in OVX mice. Thus, pharmacotherapies that increase PDGF-BB secretion from preosteoclasts offer a novel therapeutic target for osteoporosis to promote angiogenesis for bone formation.
Activated fibroblasts are associated with many different tumors. Myofibroblasts, activated fibroblasts, and perivascular mesenchymal cells such as pericytes play a role in cancer progression. Many studies suggest that myofibroblasts facilitate tumor growth and cancer progression. The source for myofibroblasts and other activated fibroblasts within the tumors is still debated. Although de novo activation of quiescent fibroblasts into A-smooth muscle actin (ASMA)-positive myofibroblasts is one likely source, epithelial to mesenchymal transition and bone marrow recruitment are also evolving as possible mechanisms for the emergence of a heterogeneous population of carcinoma-associated fibroblasts. Here, we show that transforming growth factor-B1 could induce proliferating endothelial cells to undergo a phenotypic conversion into fibroblast-like cells. Such endothelial to mesenchymal transition (EndMT) is associated with the emergence of mesenchymal marker fibroblast-specific protein-1 (FSP1) and down-regulation of CD31/PECAM. Additionally, we show EndMT in tumors using the B16F10 melanoma model and the Rip-Tag2 spontaneous pancreatic carcinoma model. Crossing Tie2-Cre mice with R26Rosa-loxStop-lox-LacZ mice allows for irreversible tagging of endothelial cells. We provide unequivocal evidence for EndMT at the invasive front of the tumors in these transgenic mice. Collectively, our results show that EndMT is a unique mechanism for the accumulation of carcinoma-associated fibroblasts and suggest that antiangiogenic treatment of tumors may have a direct effect in decreasing activated fibroblasts that likely facilitate cancer progression. [Cancer Res 2007;67(21):10123-8]
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.
Summary The functional role of pericytes in cancer progression remains unknown. Clinical studies suggest that low numbers of vessel-associated pericytes correlated with a drop in overall survival of patients with invasive breast cancer. Using genetic mouse models or pharmacological inhibitors, pericyte depletion suppressed tumor growth but enhanced metastasis. Pericyte depletion was further associated with increased hypoxia, epithelial-to-mesenchymal transition (EMT), and Met receptor activation. Silencing of Twist or use of a Met inhibitor suppressed hypoxia and EMT/Met-driven metastasis. In addition, poor pericyte coverage coupled with high Met expression in cancer cells speculates the worst prognosis for patients with invasive breast cancer. Collectively, our study suggests that pericytes within the primary tumor microenvironment likely serve as important gatekeepers against cancer progression and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.