Among the families of transition metal dichalcogenides (TMDs), Pd-based TMDs have been one of the less explored materials. In this study, we investigate the electronic properties of PdX 2 (X = S, Se, or Te) bulk and thin films. The analysis of structural stability shows that the bulk and thin film (1 to 5 layers) structures of PdS 2 exhibit pyrite, while PdTe 2 exhibits 1T. Furthermore, PdSe 2 exhibits pyrite in bulk and thin films down to the bilayer. Most surprisingly, PdSe 2 monolayer transits to 1T phase. For the electronic properties of the stable bulk configurations, pyrite PdS 2 and PdSe 2 , and 1T PdTe 2 , demonstrate semi-metallic features. For monolayer, on the other hand, the stable pyrite PdS 2 and 1T PdSe 2 monolayers are insulating with band gaps of 1.399 eV and 0.778 eV, respectively, while 1T PdTe 2 monolayer remains to be semi-metallic. The band structures of all the materials demonstrate a decreasing or closing of indirect band gap with increasing thickness. Moreover, the stable monolayer band structures of PdS 2 and PdSe 2 exhibit flat bands and diverging density of states near the Fermi level, indicating the presence of van Hove singularity. Our results show the sensitivity and tunability of the electronic properties of PdX 2 for various potential applications.
Ultrathin Janus two-dimensional (2D) materials are attracting intense interest currently. Substitutional doping of 2D transition metal dichalcogenides (TMDs) is of importance for tuning and possible enhancement of their electronic, physical and chemical properties toward industrial applications. Using systematic first-principles computations, we propose a class of Janus 2D materials based on the monolayers MX 2 (M = V, Nb, Ta, Tc, or Re; X = S, Se, or Te) with halogen (F, Cl, Br, or I) or pnictogen (N, P, As, Sb, or Bi) substitution. Nontrivial phases are obtained on pnictogen substitution of group VB (V, Nb, or Ta), whereas for group VIIB (Tc or Re), the nontrivial phases are obtained for halogen substitution. Orbital analysis shows that the nontrivial phase is driven by the splitting of M-d yz and M-d xz orbitals. Our study demonstrates that the Janus 2D materials have the tunability and suitability for synthesis under various conditions.
Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structure asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide...
Topological Dirac materials are attracting a lot of attention because they offer exotic physical phenomena. An exhaustive search coupled with first-principles calculations was implemented to investigate 10 Zintl compounds with a chemical formula of CaM2X2 (M = Zn or Cd, X = N, P, As, Sb, or Bi) under three crystal structures: CaAl2Si2-, ThCr2Si2-, and BaCu2S2-type crystal phases. All of the materials were found to energetically prefer the CaAl2Si2-type structure based on total ground state energy calculations. Symmetry-based indicators are used to evaluate their topological properties. Interestingly, we found that CaM2Bi2 (M = Zn or Cd) are topological crystalline insulators. Further calculations under the hybrid functional approach and analysis using k · p model reveal that they exhibit topological Dirac semimetal (TDSM) states, where the four-fold degenerate Dirac points are located along the high symmetry line in-between Г to A points. These findings are verified through Green's function surface state calculations under HSE06. Finally, phonon spectra calculations revealed that CaCd2Bi2 is thermodynamically stable. The Zintl phase of AM2X2 compounds have not been identified in any topological material databases, thus can be a new playground in the search for new topological materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.