High-fidelity experiments of Richtmyer–Meshkov instability on a single-mode air/$\text{SF}_{6}$ interface are carried out at weak shock conditions. The soap-film technique is extended to create single-mode gaseous interfaces which are free of small-wavelength perturbations, diffusion layers and three-dimensionality. The interfacial morphologies captured show that the instability evolution evidently involves the smallest experimental uncertainty among all existing results. The performances of the impulsive model and other nonlinear models are thoroughly examined through temporal variations of the perturbation amplitude. The individual growth of bubbles or spikes demonstrates that all nonlinear models can provide a reliable forecast of bubble development, but only the model of Zhang & Guo (J. Fluid Mech., vol. 786, 2016, pp. 47–61) can reasonably predict spike development. The distinct images of the interface morphology obtained also provide a rare opportunity to extract interface contours such that a spectral analysis of the interfacial contours can be performed, which realizes the first direct validation of the high-order nonlinear models of Zhang & Sohn (Phys. Fluids, vol. 9, 1997, pp. 1106–1124) and Vandenboomgaerde et al. (Phys. Fluids, vol. 14 (3), 2002, pp. 1111–1122) in terms of the fundamental mode and high-order harmonics. It is found that both models show a very good and almost identical accuracy in predicting the first two modes. However, the model of Zhang & Sohn (1997) becomes much more accurate in modelling the third-order harmonics due to the fewer simplifications used.
.
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
Experiments on Richtmyer–Meshkov instability of quasi-single-mode interfaces are performed. Four quasi-single-mode air/$\text{SF}_{6}$ interfaces with different deviations from the single-mode one are generated by the soap film technique to evaluate the effects of high-order modes on amplitude growth in the linear and weakly nonlinear stages. For each case, two different initial amplitudes are considered to highlight the high-amplitude effect. For the single-mode and saw-tooth interfaces with high initial amplitude, a cavity is observed at the spike head, providing experimental evidence for the previous numerical results for the first time. For the quasi-single-mode interfaces, the fundamental mode is the dominant one such that it determines the amplitude linear growth, and subsequently the impulsive theory gives a reasonable prediction of the experiments by introducing a reduction factor. The discrepancy in linear growth rates between the experiment and the prediction is amplified as the quasi-single-mode interface deviates more severely from the single-mode one. In the weakly nonlinear stage, the nonlinear model valid for a single-mode interface with small amplitude loses efficacy, which indicates that the effects of high-order modes on amplitude growth must be considered. For the saw-tooth interface with small amplitude, the amplitudes of the first three harmonics are extracted from the experiment and compared with the previous theory. The comparison proves that each initial mode develops independently in the linear and weakly nonlinear stages. A nonlinear model proposed by Zhang & Guo (J. Fluid Mech., vol. 786, 2016, pp. 47–61) is then modified by considering the effects of high-order modes. The modified model is proved to be valid in the weakly nonlinear stage even for the cases with high initial amplitude. More high-order modes are needed to match the experiment for the interfaces with a more severe deviation from the single-mode one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.