When a projectile penetrates a target at high speed, the charge loaded inside the projectile usually bears a high overload, which will consequently severely affect its performance. In order to reduce the overload of the charge during the penetration process, the structure of the projectile was improved by adding two buffers at both ends of the charge. In this study, the mathematical expressions were first gained about the axial buffering force generated by the thin-walled metal tube, aluminum foam, and the composite structure of aluminum foam-filled thin-walled metal tube when they were impacted by the high-speed mass block through reasonable assumptions and stress analysis. During the experiment on the high-speed projectile penetrating reinforced concrete target, the acceleration curve of the charge and the projectile body were obtained. The results show that the maximum overload that the charge was subjected to during the launch and penetration process was significantly reduced, and the change in overload, which the charge was subjected to during the penetration process, was also less obvious.
To investigate the high-temperature heat flow’s destructive effect of solid slow-release energetic materials on a steel target, we prepared a sample of solid slow-release energetic materials, eruption devices, and a complete test system to conduct the destruction of high-temperature heat flow on the steel target. In addition, we proposed the energy density to characterise the high-temperature heat flow performance and numerically simulated the destructive effect of the high-temperature heat flow on the steel target. The numerical simulation results were in good agreement with the test results, and the error between them was under 8.5%. Based on the test and simulation results, the steady-state melting model of the steel target was established under the action of high-temperature heat flow. Moreover, a time-varying model of the melting hole shape was found. The results showed that the model of destroying the steel target with the high-temperature heat flow of solid slow-release energetic materials was highly accurate. Therefore, the model could provide theoretical guidance for designing and applying solid slow-release energetic materials in ammunition destruction, metal cutting, the simulation of the laser thermal effect, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.