Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Topological soliton states, existing in the topological structures with edge defect or interface defect, are usually studied under steady state. Here, we experimentally observe the dynamic processes of the generation and the extinction of such soliton states in the Su−Schrieffer−Heeger model. The different topological structures are implemented on a programmable nanomechanical lattice, consisting of eight adjacent string resonators which are parametrically coupled by manipulation voltages. Moreover, the beating and localization behaviors at different topological interfaces are also observed in the same device. These results explicitly exhibit the dynamic processes of topological soliton states, which reveal real potential toward integrated multifunctional topological materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.