Blade tip timing (BTT) technology is the most effective means for real-time monitoring of blade vibration. Accurately extracting the time of blade tip reaching the sensors is the key to ensure the accuracy of the BTT system. The tip clearance changes due to various complex forces during high-speed rotation. The traditional BTT signal extraction method does not consider the influence of tip clearance change on timing accuracy and introduces large timing errors. To solve this problem, a quadratic curve fitting timing method was proposed. In addition, based on the measurement principle of the eddy current sensors, the relationship among the output voltage of the eddy current sensor, tip clearance, and the blade cutting magnetic line angle was calibrated. A multisensor vibration parameter identification algorithm based on arbitrary angular distribution was introduced. Finally, the experiments were conducted to prove the effectiveness of the proposed method. The results show that in the range of 0.4 to 1.05 mm tip clearance change, the maximum absolute error of the timing values calculated by the proposed method is 26.0359 us, which is much lower than the calculated error of 203.7459 us when using the traditional timing method. When the tip clearance changed, the constant speed synchronous vibration parameters of No. 0 blade were identified. The average value of the vibration amplitude is 1.0881 mm. Compared with the identification results without changing tip clearance, the average value error of the vibration amplitude is 0.0017 mm. It is proved that within the blade tip clearance variation of 0.4 to 0.9 mm, the timing values obtained by the proposed timing method can accurately identify the vibration parameters of the blade.
In this paper, the wettability of lead-free solders on substrates with fluxes was studied based on reflow process and Taguchi method. Effects of different control factors, including solder materials, fluxes, substrate materials and atmosphere on the wettability of the lead-free solder joints were examined and calculated. Moreover, the effect of rare earth Eu on the wetting of SnAgCu solder was investigated, the effect mechanism was analyzed too. The wettability optimal design in the lead-free solders system has the combination of the SnAgCu-0.04Eu solder, RMA flux, Au/Ni/Cu substrate, and vacuum atmosphere. Moreover, the flux is the most important factor among the control factors in the wettability system.
Blade tip-timing is one of the most effective methods for blade vibration parameters identification of turbomachinery. Once-per revolution (OPR) sensor is usually used to determine the rotating speed and as a time reference. However, the OPR sensor leads to a large measurement error or even failure, or it is difficult to install. A new improved two-parameter method without the OPR sensor is proposed to identify the synchronous vibration parameters of variable rotating speed blades. Three eddy current sensors are required to identify the excitation order, vibration amplitude, resonance rotating speed frequency, resonance frequency, and the initial phase of the blades. Numerical simulation of blade synchronous vibration parameters identification is presented, and the identification error of the method is investigated. The simulation results show that the identification accuracy of this method is better than that of the traditional two-parameter method and the improved method in reference, especially in the identification of the vibration initial phase. Experiments are conducted based on the blade tip-timing vibration measurement system. The results indicate that the standard errors of vibration parameter identification results between the new method and the method in reference are smaller, except for the initial phase. It is consistent with the results of the simulation identification. The synchronous vibration parameter identification of variable rotating speed blades without the OPR sensor is achieved based on the new improved two-parameter method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.