Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats. (3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.
The viable but nonculturable (VBNC) state has been recognized as a strategy for bacteria to cope with stressful environments; in this state, bacteria fail to grow on routine culture medium but are actually alive and can resuscitate into a culturable state under favorable conditions. The VBNC state may pose a great threat to food safety and public health. To date, more than 100 VBNC microorganism species have been proven to exist in fields of food safety, environmental application, and agricultural diseases. Most harsh conditions can induce these microorganisms into the VBNC state, including food processing and preservation methods, adverse environmental conditions, and plant‐disease controlling means. The characteristics of VBNC state cells differ from those of normally growing cells and dead cells, based on which of the various detection methods are developed, and they are of great significance for potential risk assessment. To provide molecular level insights into this state, many studies on induction and resuscitation mechanisms have emerged over the past three decades, including research on omics, specific genes, or proteins involved in VBNC state formation and the roles of promoters in resuscitation from the VBNC state. In this review, microorganism species, induction and resuscitation factors, detection methods, and formation and resuscitation mechanisms of the VBNC state are comprehensively and systematically summarized.
We investigated the anti-inflammatory role of conjugated linoleic acid (CLA) in inflammation-challenged weaned pigs and in in vitro cultured peripheral blood mononuclear cells (PBMCs). To test the hypothesis that inflammation responses can be attenuated by dietary CLA supplementation, we used an acute inflammation model in which pigs were injected with lipopolysaccharide (LPS). After 14 d of dietary supplementation with either 2% soybean oil or 2% CLA, half of the pigs in each diet group were challenged with LPS. Dietary CLA alleviated growth depression and prevented the elevations in production and mRNA expression of proinflammatory cytokines [i.e., interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha] induced by the LPS challenge. CLA enhanced the expression of interleukin-10 (IL-10) and peroxisome proliferator-activated receptor-gamma (PPARgamma) in spleen and thymus. To further elucidate the inhibitory effects and the mechanism of action of CLA on cytokine profiles (i.e., IL-1beta, IL-6, and TNF-alpha), PBMCs were isolated from weaned pigs and cultured in media containing cis-9, trans-11 (9c,11t) CLA and trans-10, cis-12 (10t,12c) CLA. Each CLA isomer suppressed the production and expression of IL-1beta, IL-6, and TNF-alpha, and enhanced PPARgamma activation and gene expression in cultured PBMCs. At the molecular level, the inhibitory actions of CLA on IL-1beta, IL-6, and TNF-alpha are attributable mainly to 10t,12c-CLA and the anti-inflammatory properties of CLA are mediated, at least in part, through a PPARgamma-dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.