A series of Cu-doped ZnIn2S4 photocatalysts has been synthesized by a facile hydrothermal method, with the copper concentration varying from 0 wt% to 2.0 wt%. The physical and photophysical properties of these Cu-doped ZnIn2S4 photocatalysts were characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), and UV−visible diffuse reflectance spectroscopy (UV−vis). The diffuse reflectance and photoluminescence spectra of Cu-doped ZnIn2S4 shifted monotonically to longer wavelengths as the copper concentration increased from 0 wt% to 2.0 wt%, indicating that the optical properties of these photocatalysts greatly depended on the amount of Cu doped. Meanwhile, the layered structure of ZnIn2S4 would be destructed gradually by Cu doping. The photoactivity of ZnIn2S4 was enhanced when Cu2+ was doped into the crystal structure. The highest photocatalytic activity was observed on Cu (0.5 wt%)–doped ZnIn2S4, with the rate of hydrogen evolution to be 151.5 μmol/h under visible light irradiation (λ > 430 nm). On the basis of the calculated energy band positions and optical properties, the effect of copper as a dopant on the photocatalytic activity of Cu-ZnIn2S4 was studied.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (∆E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm−2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm−2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm−2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.