The sudden outbreak of the Coronavirus disease (COVID-19) swept across the world in early 2020, triggering the lockdowns of several billion people across many countries, including China,
Spatial event forecasting from social media is an important problem but encounters critical challenges, such as dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) are designed to address some of these challenges, but not all of them. This paper proposes a novel multi-task learning framework which aims to concurrently address all the challenges. Specifically, given a collection of locations (e.g., cities), we propose to build forecasting models for all locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. We combine both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework; we investigate different strategies to balance homogeneity and diversity between static and dynamic terms. Efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from four different countries in Latin America demonstrated the effectiveness of our proposed approach.
The consumer UAV (unmanned aerial vehicle) market has grown significantly over the past few years. Despite its huge potential in spurring economic growth by supporting various applications, the increase of consumer UAVs poses potential risks to public security and personal privacy. To minimize the risks, efficiently detecting and identifying invading UAVs is in urgent need for both invasion detection and forensics purposes. Given the fact that consumer UAVs are usually used in a civilian environment, existing physical detection methods (such as radar, vision, and sound) may become ineffective in many scenarios.Aiming to complement the existing physical detection mechanisms, we propose a machine learning-based framework for fast UAV identification over encrypted Wi-Fi traffic. It is motivated by the observation that many consumer UAVs use Wi-Fi links for control and video streaming. The proposed framework extracts features derived only from packet size and inter-arrival time of encrypted Wi-Fi traffic, and can efficiently detect UAVs and identify their operation modes. In order to reduce the online identification time, our framework adopts a re-weighted 1norm regularization, which considers the number of samples and computation cost of different features. This framework jointly optimizes feature selection and prediction performance in a unified objective function. To tackle the packet inter-arrival time uncertainty when optimizing the trade-off between the detection accuracy and delay, we utilize Maximum Likelihood Estimation (MLE) method to estimate the packet inter-arrival time. We collect a large number of real-world Wi-Fi data traffic of eight types of consumer UAVs and conduct extensive evaluation on the performance of our proposed method. Evaluation results show that our proposed method can detect and identify tested UAVs within 0.15-0.35s with high accuracy of 85.7-95.2%. The operation mode of UAVs can be accurately identified in the range of 88.5-98.2%.
Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.