In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modelling; Latent Dirichlet Allocation (LDA) is one of the most popular in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper will be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated highly scholarly articles (between 2003 to 2016) related to topic modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. In addition, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA.
Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand.
This paper examines the effect of effectuation on new venture performance in the context of Chinese transitional economy. To determine how new ventures benefit from effectuation, we examine the role of exploratory learning as a key mediator. Using data from 266 Chinese new ventures, our results show that effectuation has a positive effect on new venture performance. Exploratory learning plays a fully mediating role in the relationship between effectuation and new venture performance. This empirical evidence contributes to the development of the theory of effectuation and also provides managerial guidelines for new ventures facing uncertain business environments like transitional economies.
Accurate segmentation of organ at risk (OAR) play a critical role in the treatment planning of image guided radiation treatment of head and neck cancer. This segmentation task is challenging for both human and automatic algorithms because of the relatively large number of OARs to be segmented, the large variability of the size and morphology across different OARs, and the low contrast of between some OARs and the background. In this paper, we proposed a two-stage segmentation framework based on 3D U-Net. In this framework, the segmentation of each OAR is decomposed into two sub-tasks: locating a bounding box of the OAR and segment it from a small volume within the bounding box, and each sub-tasks is fulfilled by a dedicated 3D U-Net. The decomposition makes each of the two sub-tasks much easier, so that they can be better completed. We evaluated the proposed method and compared it to state-ofthe-art methods by using the MICCAI 2015 Challenge dataset. In terms of the boundary-based metric 95HD, the proposed method ranked first in eight of all nine OARs and ranked second in the other OAR. In terms of the area-based metric DSC, the proposed method ranked first in six of the nine OARs and ranked second in the other three OARs with small difference with the first one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.