Colormaps are a vital method for users to gain insights into data in a visualization. With a good choice of colormaps, users are able to acquire information in the data more effectively and efficiently. In this survey, we attempt to provide readers with a comprehensive review of colormap generation techniques and provide readers a taxonomy which is helpful for finding appropriate techniques to use for their data and applications. Specifically, we first briefly introduce the basics of color spaces including color appearance models. In the core of our paper, we survey colormap generation techniques, including the latest advances in the field by grouping these techniques into four classes: procedural methods, user-study based methods, rule-based methods, and data-driven methods; we also include a section on methods that are beyond pure data comprehension purposes. We then classify colormapping techniques into a taxonomy for readers to quickly identify the appropriate techniques they might use. Furthermore, a representative set of visualization techniques that explicitly discuss the use of colormaps is reviewed and classified based on the nature of the data in these applications. Our paper is also intended to be a reference of colormap choices for readers when they are faced with similar data and/or tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.