When several foreign fighters with the same type enter detection range, the electronic warfare (EW) receivers will intercept many the same type radar emitter signals. If the intercepted pulse is processed by the traditional sorting methods, the number of emitters cannot be identified. The main reason is that the same type of radar has similar parameters. It will cause a devastating influence on subsequent strategic decisions. A novel sorting method based on the trajectory features is proposed to solve the aforementioned problems. First, the trajectory features of the intercepted pulse signal are extracted. Then, the segmentation method is utilized to preprocess the signals, which enhances the computing efficiency and improves the sorting accuracy. Meanwhile, a prediction framework based on long short-term memory (LSTM) recurrent neural network is established to forecast pulses. Finally, the radar stagger pulses are sorted by forecast pulses. The simulation results show that the proposed method can recognize the number of emitters and achieve high sorting accuracy. It provides a new idea for the radar signals sorting of the same type. INDEX TERMS Signal sorting, trajectory features, recurrent neural networks (RNNs), long short-term memory (LSTM).
In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.
Interference suppression techniques have been intensively studied in nearly two decades due to their importance for maintaining the integrity and functionality of global navigation satellite system (GNSS). However, the interference suppression method applicable for the complex receiving environment in which there are multitype interfering signals has not been considered in most of the researches. To deal with this problem better, a cascaded multitype interferences suppression method using sparse representation and array processing is proposed. In the first stage, according to the sparsity of the narrowband and modulated wideband interference signals, a novel parallel multichannel signal interference suppression method based on matching pursuit (MP) algorithm and a design strategy for the overcomplete dictionary are proposed to mitigate the interferences with sparse features. Then, the minimum power distortionless response (MPDR) beamformer is employed in the second stage to suppress the residuary interferences (such as Gaussian noise interferences). Compared with existing algorithms, the proposed method can not only effectively suppress the interference arriving from the same direction with the desired signal and increase the Degree of Freedom (DoF) of the array antenna, but also introduce no distortion into the navigation signal. The effectiveness of the proposed method is illustrated by theoretical analysis and several simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.