The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of HSL1 was responsible for the interaction. Furthermore, we found that mutations in HDA19 resulted in the ectopic expression of seed maturation genes in seedlings, which was associated with increased levels of gene activation marks, such as Histone H3 acetylation (H3ac), Histone H4 acetylation (H4ac), and Histone H3 Lys 4 tri-methylation (H3K4me3), but decreased levels of the gene repression mark Histone H3 Lys 27 tri-methylation (H3K27me3) in the promoter and/or coding regions. In addition, elevated transcription of certain seed maturation genes was also found in the hsl1 mutant seedlings, which was also accompanied by the enrichment of gene activation marks but decreased levels of the gene repression mark. Chromatin immunoprecipitation assays showed that HDA19 could directly bind to the chromatin of the seed maturation genes. These results suggest that HDA19 and HSL1 may act together to repress seed maturation gene expression during germination. Further genetic analyses revealed that the homozygous hsl1 hda19 double mutants are embryonic lethal, suggesting that HDA19 and HSL1 may play a vital role during embryogenesis.
Summary How plants can distinguish pathogenic and symbiotic fungi remains largely unknown. Here, we characterized the role of MaLYK1, a lysin motif receptor kinase of banana. Live cell imaging techniques were used in localization studies. RNA interference (RNAi)‐silenced transgenic banana plants were generated to analyze the biological role of MaLYK1. The MaLYK1 ectodomain, chitin beads, chitooligosaccharides (COs) and mycorrhizal lipochitooligosaccharides (Myc‐LCOs) were used in pulldown assays. Ligand‐induced MaLYK1 complex formation was tested in immunoprecipitation experiments. Chimeric receptors were expressed in Lotus japonicus to characterize the function of the MaLYK1 kinase domain. MaLYK1 was localized to the plasma membrane. MaLYK1 expression was induced by Foc4 (Fusarium oxysporum f. sp. cubense race 4) and diverse microbe‐associated molecular patterns. MaLYK1‐silenced banana lines showed reduced chitin‐triggered defense responses, increased Foc4‐induced disease symptoms and reduced mycorrhization. The MaLYK1 ectodomain was pulled down by chitin beads and LCOs or COs impaired this process. Ligand treatments induced MaLYK1 complex formation in planta. The kinase domain of MaLYK1 could functionally replace that of the chitin elicitor receptor kinase 1 (AtCERK1) in Arabidopsis thaliana and of a rhizobial LCO (Nod factor) receptor (LjNFR1) in L. japonicus. MaLYK1 represents a central molecular switch that controls defense‐ and symbiosis‐related signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.