IntroductionSymptoms of schizophrenia are closely related to aberrant language comprehension and production. Macroscopic brain changes seen in some patients with schizophrenia are suspected to relate to impaired language production, but this is yet to be reliably characterized. Since heterogeneity in language dysfunctions, as well as brain structure, is suspected in schizophrenia, we aimed to first seek patient subgroups with different neurobiological signatures and then quantify linguistic indices that capture the symptoms of “negative formal thought disorder” (i.e., fluency, cohesion, and complexity of language production).MethodsAtlas-based cortical thickness values (obtained with a 7T MRI scanner) of 66 patients with first-episode psychosis and 36 healthy controls were analyzed with hierarchical clustering algorithms to produce neuroanatomical subtypes. We then examined the generated subtypes and investigated the quantitative differences in MRS-based glutamate levels [in the dorsal anterior cingulate cortex (dACC)] as well as in three aspects of language production features: fluency, syntactic complexity, and lexical cohesion.ResultsTwo neuroanatomical subtypes among patients were observed, one with near-normal cortical thickness patterns while the other with widespread cortical thinning. Compared to the subgroup of patients with relatively normal cortical thickness patterns, the subgroup with widespread cortical thinning was older, with higher glutamate concentration in dACC and produced speech with reduced mean length of T-units (complexity) and lower repeats of content words (lexical cohesion), despite being equally fluent (number of words).ConclusionWe characterized a patient subgroup with thinner cortex in first-episode psychosis. This subgroup, identifiable through macroscopic changes, is also distinguishable in terms of neurochemistry (frontal glutamate) and language behavior (complexity and cohesion of speech). This study supports the hypothesis that glutamate-mediated cortical thinning may contribute to a phenotype that is detectable using the tools of computational linguistics in schizophrenia.
Neuroimaging-based brain age is a biomarker that is generated by machine learning (ML) predictions. The brain age gap (BAG) is typically defined as the difference between the predicted brain age and chronological age. Studies have consistently reported a positive BAG in individuals with schizophrenia (SCZ). However, there is little understanding of which specific factors drive the ML-based brain age predictions, leading to limited biological interpretations of the BAG. We gathered data from three publicly available databases - COBRE, MCIC, and UCLA - and an additional dataset (TOPSY) of early-stage schizophrenia (82.5% untreated first-episode sample) and calculated brain age with pre-trained gradient-boosted trees. Then, we applied SHapley Additive Explanations (SHAP) to identify which brain features influence brain age predictions. We investigated the interaction between the SHAP score for each feature and group as a function of the BAG. These analyses identified total gray matter volume (group × SHAP interaction term β = 1.71 [0.53; 3.23]; pcorr < 0.03) as the feature that influences the BAG observed in SCZ among the brain features that are most predictive of brain age. Other brain features also presented differences in SHAP values between SCZ and HC, but they were not significantly associated with the BAG. We compared the findings with a non-psychotic depression dataset (CAN-BIND), where the interaction was not significant. This study has important implications for the understanding of brain age prediction models and the BAG in SCZ and, potentially, in other psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.