Factors, such as rapid relative motion, clutter background, etc., make robust small aerial target detection for airborne infrared detection systems a challenge. Existing methods are facing difficulties when dealing with such cases. We consider that a continuous and smooth trajectory is critical in boosting small infrared aerial target detection performance. A simple and effective small aerial target detection method for airborne infrared detection system using LightGBM and trajectory constraints is proposed in this paper. First, we simply formulate target candidate detection as a binary classification problem. Target candidates in every individual frame are detected via interesting pixel detection and a trained LightGBM model. Then, the local smoothness and global continuous characteristic of the target trajectory are modeled as short-strict and long-loose constraints. The trajectory constraints are used efficiently for detecting the true small infrared aerial targets from numerous target candidates. Experiments on public datasets demonstrate that the proposed method performs better than other existing methods. Furthermore, a public dataset for small aerial target detection in airborne infrared detection systems is constructed (https://small-infrared-aerial-target-detection.grand-challenge.or g/). To the best of our knowledge, this dataset has the largest data scale and richest scene types within this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.