Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene‐pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome‐wide association studies. Expression quantitative trait locus mapping revealed that stomata‐associated gene loci were significantly associated with the expression of leaf‐related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought‐tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Chlorogenic acid (CGA) plays a crucial role in defense response, immune regulation, and the response to abiotic stress in plants. However, the genetic regulatory network of CGA biosynthesis pathways in perennial plants remains unclear. Here, we investigated the genetic architecture for CGA biosynthesis using a metabolite-based genome-wide association study (mGWAS) and expression quantitative trait nucleotide (eQTN) mapping in a population of 300 accessions of Populus tomentosa. In total, we investigated 204 SNPs which were significantly associated with 11 metabolic traits, corresponding to 206 genes, and were mainly involved in metabolism and cell growth processes of P. tomentosa. We identified 874 eQTNs representing 1066 genes, in which the expression and interaction of causal genes affected phenotypic variation. Of these, 102 genes showed significant signatures of selection in three geographical populations, which provided insights into the adaptation of CGA biosynthesis to the local environment. Finally, we constructed a genetic network of six causal genes that coordinately regulate CGA biosynthesis, revealing the multiple regulatory patterns affecting CGA accumulation in P. tomentosa. Our study provides a multiomics strategy for understanding the genetic basis underlying the natural variation in the CGA biosynthetic metabolites of Populus, which will enhance the genetic development of abiotic-resistance varieties in forest trees.
The stem lenticel is a highly specialized tissue of woody plants that has evolved to balance stem water retention and gas exchange as an adaptation to local environments. In this study, we applied genome-wide association studies and selective sweeping analysis to characterize the genetic architecture and genome-wide adaptive signatures underlying stem lenticel traits among 303 unrelated accessions of P. tomentosa, which has significant phenotypic and genetic variations according to climate region across its natural distribution. In total, we detected 108 significant single-nucleotide polymorphisms, annotated to 88 candidate genes for lenticel, of which 9 causative genes showed significantly different selection signatures among climate regions. Furthermore, PtoNAC083 and PtoMYB46 showed significant association signals and abiotic stress response, so we overexpressed these two genes in Arabidopsis thaliana and found that the number of stem cells in all three overexpression lines was significantly reduced by PtoNAC083 overexpression but slightly increased by PtoMYB46 overexpression, suggesting that both genes are involved in cell division and expansion during lenticel formation. The findings of this study demonstrate the successful application of an integrated strategy for dissecting the genetic basis and landscape genetics of complex adaptive traits, which will facilitate the molecular design of tree ideotypes that may adapt to future climate and environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.