Excellent performance has been achieved on instance segmentation but the quality on the boundary area remains unsatisfactory, which leads to a rising attention on boundary refinement. For practical use, an ideal post-processing refinement scheme are required to be accurate, generic and efficient. However, most of existing approaches propose pixel-wise refinement, which either introduce a massive computation cost or design specifically for different backbone models. Contour-based models are efficient and generic to be incorporated with any existing segmentation methods, but they often generate over-smoothed contour and tend to fail on corner areas. In this paper, we propose an efficient contour-based boundary refinement approach, named SharpContour, to tackle the segmentation of boundary area. We design a novel contour evolution process together with an Instance-aware Point Classifier. Our method deforms the contour iteratively by updating offsets in a discrete manner. Differing from existing contour evolution methods, SharpContour estimates each offset more independently so that it predicts much sharper and accurate contours. Notably, our method is generic to seamlessly work with diverse existing models with a small computational cost. Experiments show that SharpContour achieves competitive gains whilst preserving high efficiency.
Automatic tooth instance segmentation on 3D dental models is a fundamental task for computer-aided orthodontic treatments. Existing learning-based methods rely heavily on expensive point-wise annotations. To alleviate this problem, we are the first to explore a low-cost annotation way for 3D tooth instance segmentation, i.e., labeling all tooth centroids and only a few teeth for each dental model. Regarding the challenge when only weak annotation is provided, we present a dental arch prior-assisted 3D tooth segmentation method, namely DArch. Our DArch consists of two stages, including tooth centroid detection and tooth instance segmentation. Accurately detecting the tooth centroids can help locate the individual tooth, thus benefiting the segmentation. Thus, our DArch proposes to leverage the dental arch prior to assist the detection. Specifically, we firstly propose a coarse-to-fine method to estimate the dental arch, in which the dental arch is initially generated by Bezier curve regression, and then a graph-based convolutional network (GCN) is trained to refine it. With the estimated dental arch, we then propose a novel Arch-aware Point Sampling (APS) method to assist the tooth centroid proposal generation. Meantime, a segmentor is independently trained using a patch-based training strategy, aiming to segment a tooth instance from a 3D patch centered at the tooth centroid. Experimental results on 4, 773 dental models have shown our DArch can accurately segment each tooth of a dental model, and its performance is superior to the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.