Approximately 300 kg/day of food-grade CO 2 was injected through a perforated pipe placed horizontally 2-2.3 m deep during July 9-August 7, 2008 at the MSU-ZERT field test to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the subsurface storage and potential leakage of CO 2 . As part of this multidisciplinary research project, 80 samples of water were collected from 10 shallow monitoring wells (1.5 or 3.0 m deep) installed 1-6 m from the injection pipe, at the southwestern end of the slotted section (zone VI), and from two distant monitoring wells. The samples were collected before, during, and following CO 2 injection. The main objective of study was to investigate changes in the concentrations of major, minor, and trace inorganic and organic compounds during and following CO 2 injection. The ultimate goals were (1) to better understand the potential of groundwater quality impacts related to CO 2 leakage from deep storage operations, (2) to develop geochemical tools that could provide early detection of CO 2 intrusion into underground sources of drinking water (USDW), and (3) to test the predictive capabilities of geochemical codes against field data. Field determinations showed rapid and systematic changes in pH (7.0-5.6), alkalinity (400-1,330 mg/l as HCO 3 ), and electrical conductance (600-1,800 lS/cm) following CO 2 injection in samples collected from the 1.5 m-deep wells. Laboratory results show major increases in the concentrations of Ca (90-240 mg/l), Mg (25-70 mg/l), Fe (5-1,200 ppb), and Mn (5-1,400 ppb) following CO 2 injection. These chemical changes could provide early detection of CO 2 leakage into shallow groundwater from deep storage operations. Dissolution of observed carbonate minerals and desorptionion exchange resulting from lowered pH values following CO 2 injection are the likely geochemical processes responsible for the observed increases in the concentrations of solutes; concentrations generally decreased temporarily following four significant precipitation events. The DOC values obtained are 5 ± 2 mg/l, and the variations do not correlate with CO 2 injection. CO 2 injection, however, is responsible for detection of BTEX (e.g. benzene, 0-0.8 ppb), mobilization of metals, the lowered pH values, and increases in the concentrations of other solutes in groundwater. The trace metal and BTEX concentrations are all significantly below the maximum contaminant levels (MCLs). Sequential leaching of core samples is being carried out to investigate the source of metals and other solutes.
ABSTRACT. TOUGHREACT is a numerical simulation program for chemically reactive nonisothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2.The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO 2 geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the last several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented, (1) long-term fate of injected CO 2 in a storage reservoir, and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
Capturing carbon dioxide (CO(2)) emissions from industrial sources and injecting the emissions deep underground in geologic formations is one method being considered to control CO(2) concentrations in the atmosphere. Sequestering CO(2) underground has its own set of environmental risks, including the potential migration of CO(2) out of the storage reservoir and resulting acidification and release of trace constituents in shallow groundwater. A field study involving the controlled release of groundwater containing dissolved CO(2) was initiated to investigate potential groundwater impacts. Dissolution of CO(2) in the groundwater resulted in a sustained and easily detected decrease of ~3 pH units. Several trace constituents, including As and Pb, remained below their respective detections limits and/or at background levels. Other constituents (Ba, Ca, Cr, Sr, Mg, Mn, and Fe) displayed a pulse response, consisting of an initial increase in concentration followed by either a return to background levels or slightly greater than background. This suggests a fast-release mechanism (desorption, exchange, and/or fast dissolution of small finite amounts of metals) concomitant in some cases with a slower release potentially involving different solid phases or mechanisms. Inorganic constituents regulated by the U.S. Environmental Protection Agency remained below their respective maximum contaminant levels throughout the experiment.
If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO 2 would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO 2 . An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO 2 ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are 2 predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.
Concern has been expressed that carbon dioxide (CO 2 ) leaking from deep geological storage could adversely impact water quality in overlying potable aquifers by mobilizing hazardous trace elements. In this article, we present a systematic evaluation of the possible water quality changes in response to CO 2 intrusion into aquifers currently used as sources of potable water in the United States. The evaluation was done in three parts. First, we developed a comprehensive geochemical model of aquifers throughout the United States, evaluating the initial aqueous abundances, distributions, and modes of occurrence of selected hazardous trace elements in a large number of potable groundwater quality analyses from the National Water Information System (NWIS) database. For each analysis, we calculated the saturation indices (SIs) of several minerals containing these trace elements. The minerals were initially selected through literature surveys to establish whether field evidence supported their postulated presence in potable water aquifers. Mineral assemblages meeting the criterion of thermodynamic saturation were assumed to control the aqueous concentrations of the hazardous elements at initial system state as well as at elevated CO 2 concentrations caused by the ingress of leaking CO 2 . In the second step, to determine those hazardous trace elements of greatest concern in the case of CO 2 leakage, we conducted thermodynamic calculations to predict the impact of increasing CO 2 partial pressures on the solubilities of the identified trace element mineral hosts. Under reducing conditions characteristic of many groundwaters, the trace elements of greatest concern are arsenic (As) and lead (Pb). In the final step, a series of reactive-transport simulations was performed to investigate the chemical evolution of aqueous As and Pb after the intrusion of CO 2 from a storage reservoir into a shallow confined groundwater resource. Results from the reactive-transport model suggest that a significant increase of aqueous As and Pb concentrations may occur in response to CO 2 intrusion, but that the maximum concentration values remain below or close to specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces may strongly impact the mobilization of As and Pb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.