A wideband dual-mode band-pass filter (BPF) is proposed and implemented using a vertically stacked double-ring resonator (VSDR) and a pair of broadside-coupled input/output (I/O) feeding lines based on a 4-layer low temperature cofired ceramic (LTCC) substrate. The proposed BPF is required to cover the fifth generation (5G) N77/N78/N79 band (3.3-5 GHz), thus achieves a fractional bandwidth (FBW) of 40%. Furthermore, the proposed structure not only possesses a non-orthogonal I/O feeding style for convenient interconnection with neighboring devices, but also removes disturbing element for simpler layout. Comparison and discussion are implemented as well.
A narrowband low temperature co-fired ceramic (LTCC) bandpass filter (BPF) with five cascaded physical length-reduced resonators is proposed. Each resonator is built with cascaded horizontal and vertical microstrip lines to produce slow-wave effect, which reduces the physical length of resonators for miniaturization. The entire size of the proposed BPF is only 15 × 2 × 0.3 mm, and a size reduction of 60% is achieved compared with a traditional implementation. A narrowband fractional bandwidth (FBW) of 4% and an average passband insertion loss of only 2.4 dB are achieved. Comparison and discussion are implemented as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.