Glutathione S-transferases are important detoxification enzymes involved in insecticide resistance. Sequencing the Tribolium castaneum genome provides an opportunity to investigate the structure, function, and evolution of GSTs on a genome-wide scale. Thirty-six putative cytosolic GSTs and 5 microsomal GSTs have been identified in T. castaneum. Furthermore, 40, 35, 13, 23, and 32 GSTs have been discovered the other insects, Drosophila, Anopheles, Apis, Bombyx, and Acyrthosiphon, respectively. Phylogenetic analyses reveal that insect-specific GSTs, Epsilon and Delta, are the largest species-specific expanded GSTs. In T. castaneum, most GSTs are tandemly arranged in three chromosomes. Particularly, Epsilon GSTs have an inverted long-fragment duplication in the genome. Other four widely distributed classes are highly conserved in all species. Given that GSTs specially expanded in Tribolium castaneum, these genes might help to resist poisonous chemical environments and produce resistance to kinds of different insecticides.
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme superfamily. Forty-one GSTs have been identified in Tribolium castaneum; however, none of the 41 GSTs has been functionally characterized. Here, three delta-class GSTs, TcGSTd1, TcGSTd2 and TcGSTd3, of T. castaneum were successfully cloned and expressed in Escherichia coli. All of the studied GSTs catalysed the conjugation of reduced glutathione with 1-chloro-2,-4-dinitrobenzene. Insecticide treatment showed that the expression levels of TcGSTd3 and TcGSTd2 were significantly increased after exposure to phoxim and lambdacyhalothrin, whereas TcGSTd1 was slightly upregulated only in response to phoxim. A disc diffusion assay showed that overexpression of TcGSTD3, but not TcGSTD1 or TcGSTD2, in E. coli increased resistance to paraquat-induced oxidative stress. RNA interference knockdown of TcGSTd1 caused metamorphosis deficiencies and reduced fecundity by regulating insulin/target-ofrapamycin signalling pathway-mediated ecdysteroid biosynthesis, and knockdown of TcGSTd3 led to reduced fertility and a decreased hatch rate of the offspring, probably caused by the reduced antioxidative activity in the reproductive organs. These results indicate that TcGSTd3 and TcGSTd2 may play vital roles in cellular detoxification, whereas TcGSTd1 may play essential roles in normal development of T. castaneum. These delta-class GSTs in T. castaneum have obtained different functions during the evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.