In this work, we introduce a large high-diversity database for generic object tracking, called GOT-10k. GOT-10k is backboned by the semantic hierarchy of WordNet [1]. It populates a majority of 563 object classes and 87 motion patterns in real-world, resulting in a scale of over 10 thousand video segments and 1.5 million bounding boxes. To our knowledge, GOT-10k is by far the richest motion trajectory dataset, and its coverage of object classes is more than a magnitude wider than similar scale counterparts [20], [23]. By publishing GOT-10k, we hope to encourage the development of generic purposed trackers that work for a wide range of moving objects and under diverse real-world scenarios. To promote generalization and avoid the evaluation results biased to seen classes, we follow the one-shot principle [35] in dataset splitting where training and testing classes are zero-overlapped. We also carry out a series of analytical experiments to select a compact while highly representative testing subset -it embodies 84 object classes and 32 motion patterns with only 180 video segments, allowing for efficient evaluation. Finally, we train and evaluate a number of representative trackers on GOT-10k and analyze their performance. The evaluation results suggest that tracking in real-world unconstrained videos is far from being solved, and only 40% of frames are successfully tracked using top ranking trackers. The database and toolkits are publicly available at https://got-10k.github.io.
A key capability of a long-term tracker is to search for targets in very large areas (typically the entire image) to handle possible target absences or tracking failures. However, currently there is a lack of such a strong baseline for global instance search. In this work, we aim to bridge this gap. Specifically, we propose GlobalTrack, a pure global instance search based tracker that makes no assumption on the temporal consistency of the target's positions and scales. GlobalTrack is developed based on two-stage object detectors, and it is able to perform full-image and multi-scale search of arbitrary instances with only a single query as the guide. We further propose a cross-query loss to improve the robustness of our approach against distractors. With no online learning, no punishment on position or scale changes, no scale smoothing and no trajectory refinement, our pure global instance search based tracker achieves comparable, sometimes much better performance on four large-scale tracking benchmarks (i.e., 52.1% AUC on LaSOT, 63.8% success rate on TLP, 60.3% MaxGM on OxUvA and 75.4% normalized precision on TrackingNet), compared to state-of-the-art approaches that typically require complex post-processing. More importantly, our tracker runs without cumulative errors, i.e., any type of temporary tracking failures will not affect its performance on future frames, making it ideal for long-term tracking. We hope this work will be a strong baseline for long-term tracking and will stimulate future works in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.