Starch degradation is a necessary process determining banana fruit quality during ripening. Many starch degradation-related genes are well studied. However, the transcriptional regulation of starch degradation during banana fruit ripening remains poorly understood. In this study, we identified a MYB transcription factor (TF) termed MaMYB3, as a putative protein binding the promoter of MaGWD1, a member of glucan water dikinase (GWD) family which has been demonstrated as an important enzyme of starch degradation.MaMYB3 was ripening-and ethylene-repressible, and its expression was negatively correlated with starch degradation. Acting as a nucleus-localized transcriptional repressor, MaMYB3 repressed the transcription of 10 starch degradation-related genes, including MaGWD1, MaSEX4, MaBAM7-MaBAM8, MaAMY2B, MaAMY3, MaAMY3A, MaAMY3C, MaMEX1, and MapGlcT2-1, by directly binding to their promoters. Interestingly, a previously identified activator of starch degradation-related genes, MabHLH6, was also suppressed by MaMYB3. The ectopic overexpression of MaMYB3 in tomato down-regulated the expression of starch degradation-related genes, inhibited starch degradation and delayed fruit ripening. Based on these findings, we conclude that MaMYB3 negatively impacts starch degradation by directly repressing starch degradation-related genes and MabHLH6, and thereby delays banana fruit ripening. Collectively, our study expands our understanding of the complex transcriptional regulatory hierarchy modulating starch degradation during fruit ripening.
Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.
Linoleic acid (LA; C18:2) and α-linolenic acid (ALA; C18:3) are two essential unsaturated fatty acids that play indispensable roles in maintaining membrane integrity in cold stress, and ω-3 fatty acid desaturases (FADs) are responsible for the transformation of LA into ALA. However, how this process is regulated at transcriptional and posttranscriptional levels remains largely unknown. In this study, an MYB transcription factor, MaMYB4, of a banana fruit was identified and found to target several ω-3 MaFADs, including MaFAD3-1, MaFAD3-3, MaFAD3-4 and MaFAD3-7, and repress their transcription. Intriguingly, the acetylation levels of histones H3 and H4 in the promoters of ω-3 MaFADs were elevated in response to cold stress, which was correlated with the enhancement in the transcription levels of ω-3 MaFADs and the ratio of ALA/LA. Moreover, a histone deacetylase MaHDA2 physically interacted with MaMYB4, thereby leading to the enhanced MaMYB4-mediated transcriptional repression of ω-3 MaFADs. Collectively, these data demonstrate that MaMYB4 might recruit MaHDA2 to repress the transcription of ω-3 MaFADs by affecting their acetylation levels, thus modulating fatty acid biosynthesis. Our findings provided new molecular insights into the regulatory mechanisms of fatty acid biosynthesis in cold stress in fruits.
Previous studies indicated that methyl jasmonate (MeJA) treatment could effectively reduce the chilling injury of many fruits, including banana, but the underlying mechanism is poorly understood. In this study, one lateral organ boundaries (LOB) domain (LBD) gene, designated as MaLBD5, was isolated and characterized from banana fruit. Expression analysis revealed that accumulation of MaLBD5 was induced by cold temperature and MeJA treatment. Subcellular localization and transactivation assays showed that MaLBD5 was localized to the nucleus and possessed transcriptional activation activity. Protein-protein interaction analysis demonstrated that MaLBD5 physically interacted with MaJAZ1, a potential repressor of jasmonate signaling. Furthermore, transient expression assays indicated that MaLBD5 transactivated a jasmonate biosynthesis gene, termed MaAOC2, which was also induced by cold and MeJA. More interestingly, MaJAZ1 attenuated the MaLBD5-mediated transactivation of MaAOC2. These results suggest that MaLBD5 and MaJAZ1 might act antagonistically in relation to MeJA-induced cold tolerance of banana fruit, at least partially via affecting jasmonate biosynthesis. Collectively, our findings expand the knowledge of the transcriptional regulatory network of MeJA-mediated cold tolerance of banana fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.