Learning spatiotemporal features via 3D-CNN (3D Convolutional Neural Network) models has been regarded as an effective approach for action recognition. In this paper, we explore visual attention mechanism for video analysis and propose a novel 3D-CNN model, dubbed AE-I3D (Attention-Enhanced Inflated-3D Network), for learning attention-enhanced spatiotemporal representation. The contribution of our AE-I3D is threefold: First, we inflate soft attention in spatiotemporal scope for 3D videos, and adopt softmax to generate probability distribution of attentional features in a feedforward 3D-CNN architecture; Second, we devise an AE-Res (Attention-Enhanced Residual learning) module, which learns attention-enhanced features in a two-branch residual learning way, also the AE-Res module is lightweight and flexible, so that can be easily embedded into many 3D-CNN architectures; Finally, we embed multiple AE-Res modules into an I3D (Inflated-3D) network, yielding our AE-I3D model, which can be trained in an end-to-end, video-level manner. Different from previous attention networks, our method inflates residual attention from 2D image to 3D video for 3D attention residual learning to enhance spatiotemporal representation. We use RGB-only video data for evaluation on three benchmarks: UCF101, HMDB51, and Kinetics. The experimental results demonstrate that our AE-I3D is effective with competitive performance.
Learning spatiotemporal features is very effective but challenging for video understanding especially action recognition. In this paper, we propose Multi-Group Multi-Attention, dubbed MGMA, paying more attention to "where and when" the action happens, for learning discriminative spatiotemporal representation in videos. The contribution of MGMA is threefold: First, by devising a new spatiotemporal separable attention mechanism, it can learn temporal attention and spatial attention separately for fine-grained spatiotemporal representation. Second, through designing a novel multigroup structure, it can capture multi-attention rendered spatiotemporal features better. Finally, our MGMA module is lightweight and flexible yet effective, so that can be easily embedded into any 3D Convolutional Neural Network (3D-CNN) architecture. We embed multiple MGMA modules into 3D-CNN to train an end-to-end, RGBonly model and evaluate on four popular benchmarks: UCF101 and HMDB51, Something-Something V1 and V2. Ablation study and experimental comparison demonstrate the strength of our MGMA, which achieves superior performance compared to state-of-the-arts. Our code is available at https://github.com/zhenglab/mgma. CCS CONCEPTS • Computing methodologies → Activity recognition and understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.