Feature extraction and image classification using polarimetric synthetic aperture radar (PolSAR) images are currently of great interest in SAR applications. Generally, PolSAR image classification is a high-dimensional nonlinear mapping problem. Sparse representation-based techniques have shown great potential for pattern recognition problems. Therefore, on the basis of the sparse characteristics of the features for PolSAR image classification, a supervised PolSAR image classification method based on sparse representation is proposed in this paper. First, the effective features are extracted to describe the distinction of each class. Then, the feature vectors of the training samples construct an over-complete dictionary and obtain the corresponding sparse coefficients; meanwhile, the residual error of the pending pixel with respect to each atom is evaluated and considered as the criteria for classification, and the ultimate class results can be obtained according to the atoms with the least residual error. In addition, a Simplified Matching Pursuit (SMP) algorithm is proposed to solve the optimization problem of sparse representation of PolSAR images. The verification tests are implemented using Danish EMISAR L-band fully polarimetric SAR data of Foulum area, Denmark. The preliminary experimental results confirm that the proposed method outputs an excellent result and moreover the classification process is simpler and less time consuming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.