Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root.
Occupation of living space is one of the main driving forces of adaptive evolution, especially for aquatic plants whose leaves float on the water surface and thus have limited living space. Euryale ferox, from the angiosperm basal family Nymphaeaceae, develops large, rapidly expanding leaves to compete for space on the water surface. Microscopic observation found that the cell proliferation of leaves is almost completed underwater, while the cell expansion occurs rapidly after they grow above water. To explore the mechanism underlying the specific development of leaves, we performed sequences assembly and analyzed the genome and transcriptome dynamics of E. ferox. Through reconstruction of the three sub-genomes generated from the paleo-hexaploidization event in E. ferox, we revealed that one sub-genome was phylogenetically closer to Victoria cruziana, which also exhibits gigantic floating leaves. Further analysis revealed that while all three sub-genomes promoted the evolution of the specific leaf development in E. ferox, the genes from the sub-genome closer to V. cruziana contributed more to this adaptive evolution. Moreover, we found that genes involved in cell proliferation and expansion, photosynthesis, and energy transportation were overretained and showed strong expression association with the leaf development stages, such as the expression divergence of SWEET orthologs as energy uploaders and unloaders in the sink and source leaf organs of E. ferox. These findings provide novel insights into the genome evolution through polyploidization, as well as the adaptive evolution regarding the leaf development accomplished through biased gene retention and expression sub-functionalization of multi-copy genes in E. ferox.
Optimal nitrogen (N) supply significantly increases the starch content, components, and yield of Nelumbo nucifera. However, the underlying transcriptional mechanism and starch accumulation under dose-dependent nitrogen fertilizer are poorly understood. In this study, we found that the optimal nitrogen fertilizer (N2, 30 kg/667 m2) was more beneficial to improve the stomatal conductance (Gs), leaf intercellular CO2 concentration (Ci), transpiration rate (Tr), net photosynthetic rates (Pn), chlorophyll content, starch content, and plot yield. What is more, N2-fertilizer treatment induced a higher number of starch granule, AP2 content, and RVA curve peaks. Then, the transcriptomic analyses performed in control (CK) and N2-fertilizer treatment (N2) showed that the expressions of many differentially expressed genes (DEGs) were significantly induced by N2. KEGG and GO enrichment analysis showed that these DEGs were significantly enriched in biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, carbon metabolism, carbon fixation in photosynthetic organisms, plant hormone signal transduction, and starch and sucrose metabolisms, suggesting that nitrogen fertilizer induced alterations of photosynthesis- and starch accumulation-related gene expression profiles. Finally, six photosynthesis-related genes and fourteen starch synthesis-related genes were confirmed to be required for starch accumulation in the Nelumbo nucifera development. qPCR analysis of six starch accumulation-related genes demonstrated the accuracy of the transcriptome. Hence, our study provides valuable resource for future studies on molecular mechanisms underlying starch accumulation in Nelumbo nucifera rhizome under N-fertilizer treatment.
Water dropwort (Oenanthe javanica) is a popular vegetable with high nutritional value and distinctive flavor. The flavor is mainly correlate with the biosynthesis of terpenoids. Shading cultivation was used to improve the flavor in the production of water dropwort. However, the changes of terpenoids and the genes involved in terpenoids biosynthesis under shading treatment remains unclear. In this study, the long- and short-reads transcriptomes of water dropwort were constructed. In total, 57,743 non-redundant high-quality transcripts were obtained from the transcriptome. 28,514 SSRs were identified from non-redundant transcripts and the mono-nucleotide repeats were the most abundant SSRs. The lncRNAs of water dropwort were recognized and their target genes were predicted. The volatile compound contents in petioles and leaf blades of water dropwort were decreased after the shading treatment. The DEGs analysis was performed to identify the terpenoids biosynthesis genes. The results indicated that 5,288 DEGs were differentially expressed in petiole, of which 22 DEGs were enriched in the terpenoids backbone biosynthesis pathway. A total of 12 DEGs in terpenoids biosynthesis pathway were selected and further verified by qRT-PCR assay, demonstrating that the terpenoids biosynthesis genes were down-regulated under shading treatment. Here, the full-length transcriptome was constructed and the regulatory genes related to terpenoids biosynthesis in water dropwort were also investigated. These results will provide useful information for future researches on functional genomics and terpenoids biosynthesis mechanism in water dropwort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.