The optimal synthesis process conditions of polycarboxylic acid water reducers were investigated and characterized by infrared spectroscopy as well as GPC using high performance polycarboxylic acid water reducers synthesized by isoproterenol polyoxyethylene ether polymerized with acrylic acid and introducing unsaturated monomeric dibasic ester. The results showed that the optimum synthetic process conditions were as follows: acid-ether ratio of 3.0:1, amount of binary ester as 2.8% of monomer mass, amount of initiator as 0.35% of monomer mass, amount of chain transfer agent as 0.35% of monomer mass; the initial slump and initial expansion of the concrete of the synthetic water-reducing agent PCE-H were greater than those of the commercially available polycarboxylic acid water-reducing agent PCE-W, and the working performance of the concrete was better. PCE-H also has no adverse effect on strength.
This article discusses the effect on the mildew of polycarboxylic superplasticizer under different environmental temperature, sealing conditions, reaction temperature, acid-ether ratio, initiation system and compounding with different dosage of sodium gluconate. The results of the study indicate that the polycarboxylic superplasticizer should be kept as tightly as possible when not in use. In the case of the same cost performance, it can be selected to appropriately increase the acid-ether ratio, the reaction temperature, and reasonably select the additives with bactericidal effect for production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.