This paper considers the person verification problem in modern surveillance and video retrieval systems. The problem is to identify whether a pair of face or human body images is about the same person, even if the person is not seen before. Traditional methods usually look for a distance (or similarity) measure between images (e.g., by metric learning algorithms), and make decisions based on a fixed threshold. We show that this is nevertheless insufficient and sub-optimal for the verification problem. This paper proposes to learn a decision function for verification that can be viewed as a joint model of a distance metric and a locally adaptive thresholding rule. We further formulate the inference on our decision function as a second-order large-margin regularization problem, and provide an efficient algorithm in its dual from. We evaluate our algorithm on both human body verification and face verification problems. Our method outperforms not only the classical metric learning algorithm including LMNN and ITML, but also the state-of-the-art in the computer vision community.
The ability of learning from noisy labels is very useful in many visual recognition tasks, as a vast amount of data with noisy labels are relatively easy to obtain. Traditionally, label noise has been treated as statistical outliers, and techniques such as importance re-weighting and bootstrapping have been proposed to alleviate the problem. According to our observation, the real-world noisy labels exhibit multimode characteristics as the true labels, rather than behaving like independent random outliers. In this work, we propose a unified distillation framework to use "side" information, including a small clean dataset and label relations in knowledge graph, to "hedge the risk" of learning from noisy labels. Unlike the traditional approaches evaluated based on simulated label noises, we propose a suite of new benchmark datasets, in Sports, Species and Artifacts domains, to evaluate the task of learning from noisy labels in the practical setting. The empirical study demonstrates the effectiveness of our proposed method in all the domains.
We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). A major drawback of the pLSA and LDA models is the assumption that each patch in the image is independently generated given its corresponding latent topic. While such representation provides an efficient computational method, it lacks the power to describe the visually coherent images and scenes. Instead, we propose a spatially coherent latent topic model (Spatial-LTM). Spatial-LTM represents an image containing objects in a hierarchical way by oversegmented image regions of homogeneous appearances and the salient image patches within the regions. Only one single latent topic is assigned to the image patches within each region, enforcing the spatial coherency of the model. This idea gives rise to the following merits of Spatial-LTM: (1) Spatial-LTM provides a unified representation for spatially coherent bag of words topic models; (2) Spatial-LTM can simultaneously segment and classify objects, even in the case of occlusion and multiple instances; and (3) Spatial-LTM can be trained either unsupervised or supervised, as well as when partial object labels are provided. We verify the success of our model in a number of segmentation and classification experiments.
Attribute-based representation has shown great promises for visual recognition due to its intuitive interpretation and cross-category generalization property. However, human efforts are usually involved in the attribute designing process, making the representation costly to obtain. In this paper, we propose a novel formulation to automatically design discriminative "category-level attributes", which can be efficiently encoded by a compact category-attribute matrix. The formulation allows us to achieve intuitive and critical design criteria (category-separability, learnability) in a principled way. The designed attributes can be used for tasks of cross-category knowledge transfer, achieving superior performance over well-known attribute dataset Animals with Attributes (AwA) and a large-scale ILSVRC2010 dataset (1.2M images). This approach also leads to state-ofthe-art performance on the zero-shot learning task on AwA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.