In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5-or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription–real-time PCR (qRT–PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Summary AGD2‐LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA‐independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1 ‐mediated resistance. NbALD1 was up‐regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1 , enhanced resistance to TuMV. The SA content was lower in NbALD1 ‐silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1 ‐mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA‐independent resistance pathway. The ethylene precursor, 1‐aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1 ‐silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1 , a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1 ‐silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip‐treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.