The highly efficient exudation of lubricant in porous self-lubricating materials significantly influences the formation of self-lubricating films. In this paper, micropores with inner spiral bulge structures are considered, and their influence on the capillary behaviors of the lubricant is discussed to reveal the capillary rising mechanism. The results show that the Taylor capillary lift phenomenon is produced in the spiral bulge structure of the micropore, and the capillary lift force is enhanced. The spiral structure decreases the effective diameter of micropores. The magnitudes of the pressure and velocity in the spiral structure pores are larger than those in smooth pores. The liquid in the upper part of the micropores forms a velocity vortex during its upward rotation along the spiral channel, which promotes the capillary rising behavior. For smaller pitches, the velocity vortex increases, and the rising speed of the lubricant grows. The inner spiral bulge structure gives the micropores an excellent capillary rising ability. The quantitative characterization and mechanism reveal that the capillary rising behavior can be used to guide the bionic designs of pores in self-lubricating materials.
Porous materials are widely used in friction pairs. The transient squeezing flow of the lubricant significantly affects the lubrication quality. The study found that the lubricant penetrates into the porous matrix in the contact area and exudes upward to the entrance of the contact area. The maximum stress occurs at the subsurface of the contact zone, and the maximum pressure occurs at the contact centre. In the early loading stage, the lubricant exudates, resulting in a higher liquid‐phase load. With the prolongation of the time, the average stress decreases and then increases gradually, whilst the average pressure has the opposite change. In the late loading stage, the load is completely borne by the solid phase. Increasing the load will increases the seepage velocity of the lubricant, which enhance the pumping effect of the friction interface. The findings can help for better understanding of the self‐lubrication mechanism of the porous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.