This study aimed to investigate the changes in functional connectivity (FC) within each resting-state network (RSN) and between RSNs in subcortical stroke patients who were well recovered in global motor function. Eleven meaningful RSNs were identified via functional magnetic resonance imaging data from 25 subcortical stroke patients and 22 normal controls using independent component analysis. Compared with normal controls, stroke patients exhibited increased intranetwork FC in the sensorimotor (SMN), visual (VN), auditory (AN), dorsal attention (DAN), and default mode (DMN) networks; they also exhibited decreased intranetwork FC in the frontoparietal network (FPN) and anterior DMN. Stroke patients displayed a shift from no FC in controls to negative internetwork FC between the VN and AN as well as between the VN and SMN. Stroke patients also exhibited weakened positive (anterior and posterior DMN; posterior DMN and right FPN) or negative (AN and right FPN; posterior DMN and dorsal SMN) internetwork FC when compared with normal controls. We suggest that subcortical stroke may induce connectivity changes in multiple functional networks, affecting not only the intranetwork FC within RSNs but also the internetwork FC between these RSNs.
Background and Purpose-Both structural atrophy and functional reorganization of the primary motor cortex (M1) have been reported in patients with subcortical infarctions affecting the motor pathway. However, the relationship between structural impairment and functional reorganization in M1 remains unclear. Methods-Twenty-six patients exhibiting significant recovery after subcortical infarctions were investigated using multimodal MRI techniques. Structural impairment was assessed via cortical thickness, and functional reorganization was analyzed using task-evoked activation, amplitude of low-frequency fluctuation, and resting-state functional connectivity. Results-Compared with healthy controls, patients with stroke exhibited reduced cortical thickness in the ipsilesional M1; however, this region exhibited increased task-evoked activation, amplitude of low-frequency fluctuation, and resting-state functional connectivity in these patients. Patients with stroke demonstrated increased task-evoked activation in another ipsilesional M1 region, in which increased amplitude of low-frequency fluctuation and resting-state functional connectivity were observed. The structural and functional changes in M1 were located selectively in the ipsilesional hemisphere. Conclusions-We
Articles you may be interested inEffects of rapid thermal annealing on the electrical properties of the AlGaN/AlN/GaN heterostructure fieldeffect transistors with Ti/Al/Ni/Au gate electrodes Appl. Phys. Lett. 105, 083501 (2014); 10.1063/1.4894093 Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors J. Appl. Phys. 116, 044507 (2014); 10.1063/1.4891258 Enhanced effect of strain-induced polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors Appl.
Ni Schottky contacts on AlGaN/GaN heterostructures have been fabricated, and one of the prepared samples has been annealed at 700 °C for half an hour. The barrier heights for the prepared samples were measured by internal photoemission. Based on the measured forward current-voltage (I-V) characteristics and using the two-diode model, the Ni Schottky barrier height at zero bias has been analyzed and calculated by self-consistently solving Schrodinger’s and Poisson’s equations, and the correlation expression between the barrier height at zero electric field and that at zero bias has been derived for Schottky contacts on AlGaN/GaN heterostructures. The calculated Schottky barrier heights corresponding to zero electric field for the prepared Ni Schottky contacts on AlGaN/GaN heterostructures agree well with the photocurrent measured results. Thus, the method for extraction of AlGaN/GaN heterostructure Schottky barrier heights from forward I-V characteristics is developed and determined.
PurposeBreast cancer is the leading cause of cancer death worldwide in women. The molecular mechanism for human breast cancer is unknown. Gene microarray has been widely used in breast cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis survival. So far, the valuable multigene signatures in clinical practice are unclear, and the biological importance of individual genes is difficult to detect, as the described signatures virtually do not overlap. Early prognosis of this disease, breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS), is vital in breast surgery.MethodsThus, this study reports gene expression profiling in large breast cancer cohorts from Gene Expression Omnibus, including GSE29044 (N=138) and GSE10780 (N=185) test series and four independent validation series GSE21653 (N=266), GSE20685 (N=327), GSE26971 (N=276), and GSE12776 (N=204). Significantly differentially expressed genes in human breast IDC and breast DCIS were detected by transcriptome microarray analysis.ResultsWe created a set of three genes (MAMDC2, TSHZ2, and CLDN11) that were significantly correlated with disease-free survival of breast cancer patients using a univariate Cox regression model (significance level P<0.01) in a meta-analysis. Based on the risk score of the three genes, the test series patients could be separated into low-risk and high-risk groups with significantly different survival times. This signature was validated in the other three cohorts. The prognostic value of this three-gene signature was confirmed in the internal validation series and another four independent breast cancer data sets. The prognostic impact of one of the three genes, CLDN11, was confirmed by immunohistochemistry. CLDN11 was significantly overexpressed in human breast IDC as compared with normal breast tissues and breast DCIS.ConclusionUsing novel gene expression profiling together with a meta-analysis validation approach, we have identified a three-gene signature with independent prognostic impact. Furthermore, CLDN11 may offer a biomarker to predict prognosis as well as a new target for prognostic and therapeutic intervention for human breast IDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.