The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), two obligate bamboo feeders, have distinct phylogenetic positions in the order Carnivora. Bamboo is extraordinarily rich in plant secondary metabolites, such as allied phenolic and polyphenolic compounds and even toxic cyanide compounds. Here, the enrichment of putative cyanide-digesting gut microbes, in combination with adaptations related to morphology (e.g., pseudothumbs) and genomic signatures, show that the giant panda and red panda have evolved some common traits to adapt to their bamboo diet. Thus, here is another story of diet-driven gut microbiota in nature.
Developing cost‐effective and high‐performance catalysts for oxygen evolution reaction (OER) is essential to improve the efficiency of electrochemical conversion devices. Unfortunately, current studies greatly depend on empirical exploration and ignore the inherent relationship between electronic structure and catalytic activity, which impedes the rational design of high‐efficiency OER catalysts. Herein, a series of bimetallic Ni‐based metal‐organic frameworks (Ni‐M‐MOFs, M = Fe, Co, Cu, Mn, and Zn) with well‐defined morphology and active sites are selected as the ideal platform to explore the electronic‐structure/catalytic‐activity relationship. By integrating density‐functional theory calculations and experimental measurements, a volcano‐shaped relationship between electronic properties (d‐band center and eg filling) and OER activity is demonstrated, in which the NiFe‐MOF with the optimized energy level and electronic structure situated closer to the volcano summit. It delivers ultra‐low overpotentials of 215 and 297 mV for 10 and 500 mA cm−2, respectively. The identified electronic‐structure/catalytic activity relationship is found to be universal for other Ni‐based MOF catalysts (e.g., Ni‐M‐BDC‐NH2, Ni‐M‐BTC, Ni‐M‐NDC, Ni‐M‐DOBDC, and Ni‐M‐PYDC). This work widens the applicability of d band center and eg filling descriptors to activity prediction of MOF‐based electrocatalysts, providing an insightful perspective to design highly efficient OER catalysts.
Sorting nexins (SNXs) are phosphoinositide-binding proteins implicated in the sorting of various membrane proteins in vitro, but the in vivo functions of them remain largely unknown. We reported previously that SNX10 is a unique member of the SNX family genes in that it has vacuolation activity in cells. We investigate the biological function of SNX10 by loss-of-function assay in this study and demonstrate that SNX10 is required for the formation of primary cilia in cultured cells. In zebrafish, SNX10 is involved in ciliogenesis in the Kupffer's vesicle and essential for left-right patterning of visceral organs. Mechanistically, SNX10 interacts with V-ATPase complex and targets it to the centrosome where ciliogenesis is initiated. Like SNX10, V-ATPase regulates ciliogenesis in vitro and in vivo and does so synergistically with SNX10. We further discover that SNX10 and V-ATPase regulate the ciliary trafficking of Rab8a, which is a critical regulator of ciliary membrane extension. These results identify an SNX10/V-ATPaseregulated vesicular trafficking pathway that is crucial for ciliogenesis, and reveal that SNX10/V-ATPase, through the regulation of cilia formation in various organs, play an essential role during early embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.