Using sunlight to manufacture hydrogen offers promising access to renewable clean energy. For this, low‐cost photocatalyst with effective light absorption and charge transfer are crucial, as current top‐performing systems often involve precious metals like Pd and Pt. An integrated organic–inorganic photocatalyst based on the cheap metals of iron and nickel are reported, wherein the metal ions form strong metal‐sulfur bonds with the organic linker molecules (2,5‐dimercapto‐1,4‐benzenedicarboxylic acid, H4DMBD) to generate 2D coordination sheets for promoting light absorption and charge transport. The 2D sheets are further modified through ionic metal‐carboxylate moieties to allow for functional flexibility. Thus, high‐surface‐area thin nanosheets of this 2D material, with an optimized Fe/Ni ratio (0.25:1.75), and in heterojunction with CdS nanosheet, achieve a stable photocatalytic hydrogen evolution rate of 12.15 µmol mg−1 h−1. This work synergizes coordination network design and nano‐assembly as a versatile platform for catalyzing hydrogen production and other sustainable processes.
The synthesis of coordination polymers (e.g., Prussian blue) is as old as modern chemistry, but never stops surprising people. Underlying this rich chemistry is the infinite organic molecules that can be designed to link up various metal ions or clusters. We here report superconductivity observed of a designer coordination polymer system sporting the chemically soft mercaptan and hard carboxyl groups. The mercaptan-carboxyl (dubbed Mercarb, or QiuSuo in Mandarin Pinyin) synergy hints at Daoism and here carries over from the molecular to the solid state: the soft sulfur donors bond with Co2+/Ni2+ (or other transition metal ions) to afford 2D sheets for charge transport, while the interlayer metal-carboxylate domain is more ionic and mediates the transition into the superconductive state. Besides the flexible QiuSuo design, this CP system is open, and allows exchange of molecule guests for tuning the electron-hole balance, in order to achieve high-temperature superconductivity.
The synthesis of coordination polymers (e.g., Prussian blue) is as old as modern chemistry itself, but never stops surprising people. We here report superconductivity observed of a designer coordination polymer system sporting the chemically soft mercaptan and hard carboxyl groups. The mercapto-carboxyl (dubbed Mercarb, or QiuSuo in Mandarin Pinyin) synergy hints at Daoism and here carries over from the molecular to the solid state: the soft sulfur donors bond with Co2+/Ni2+ (or other transition metal ions) to afford 2D sheets for charge transport, while the interlayer metal-carboxylate domain is more ionic and mediates the transition into the superconductive state. Besides the flexible QiuSuo design, this CP system is suited for doping (e.g., with μ2-OH2 units to effect charge balance by transforming into μ2-OH-), in order to fine-tune the electron-hole balance, and to achieve high-temperature superconductivity.
The synthesis of coordination polymers (e.g., Prussian blue) is as old as modern chemistry, but never stops surprising people. Underlying this rich chemistry is the infinite organic molecules that can be designed to link up various metal ions or clusters. We here report superconductivity observed of a designer coordination polymer system sporting the chemically soft mercaptan and hard carboxyl groups. The mercaptan-carboxyl (dubbed Mercarb, or QiuSuo in Mandarin Pinyin) synergy smacks of Daoism and here carries over from the molecular to the solid state: the soft sulfur donors bond with Co2+/Ni2+ (or other transition metal ions) to afford 2D sheets for charge transport, while the interlayer metal-carboxylate domain is more ionic and mediates the transition into the superconductive state. Besides the flexible QiuSuo design, this CP system is open, and allows exchange of molecule guests for tuning the electron-hole balance, in order to achieve high-temperature superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.