The bandgaps of monolayer and bulk molybdenum sulfide (MoS2 ) result in that they are far from suitable for application as a saturable absorption device. In this paper, the operation of a broadband MoS2 saturable absorber is demonstrated by the introduction of suitable defects. It is believed that the results provide some inspiration in the investigation of two-dimensional optoelectronic materials.
Photodetectors with excellent detecting properties over a broad spectral range have advantages for the application in many optoelectronic devices. Introducing imperfections to the atomic lattices in semiconductors is a significant way for tuning the bandgap and achieving broadband response, but the imperfection may renovate their intrinsic properties far from the desire. Here, by controlling the deviation from the perfection of the atomic lattice, ultrabroadband multilayer MoS photodetectors are originally designed and realized with the detection range over 2000 nm from 445 nm (blue) to 2717 nm (mid-infrared). Associated with the narrow but nonzero bandgap and large photoresponsivity, the optimized deviation from the perfection of MoS samples is theoretically found and experimentally achieved aiming at the ultrabroadband photoresponse. By the photodetection characterization, the responsivity and detectivity of the present photodetectors are investigated in the wavelength range from 445 to 2717 nm with the maximum values of 50.7 mA W and 1.55 × 10 Jones, respectively, which represent the most broadband MoS photodetectors. Based on the easy manipulation, low cost, large scale, and broadband photoresponse, this present detector has significant potential for the applications in optoelectronics and electronics in the future.
Large-area vertical rutile TiO2 nanorod arrays (TNAs) were grown on F/SnO2 conductive glass using a hydrothermal method at low temperature. A self-powered ultraviolet (UV) photodetector based on TiO2 nanorod/water solid–liquid heterojunction is designed and fabricated. These nanorods offer an enlarged TiO2/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. A photosensitivity of 0.025 A/W and a quick response time were observed. At the same time, a high photosensitivity in a wide range of wavelength was also demonstrated. This TNA/water UV detector can be a particularly suitable candidate for practical applications for its high photosensitivity, fast response, excellent spectral selectivity, uncomplicated low-cost fabrication process, and environment-friendly feature.
We explore the atomic and electronic structures of single-crystalline aluminum nitride nanowires (AlNNWs) and thick-walled aluminum nitride nanotubes (AlNNTs) with the diameters ranging from 0.7 to 2.2 nm by using first-principles calculations and molecular dynamics simulations based on density functional theory (DFT). We find that the preferable lateral facets of AlNNWs and thick-walled AlNNTs are {1010} surfaces, giving rise to hexagonal cross sections. Quite different from the cylindrical network of hexagons revealed in single-walled AlNNTs, the wall of thick-walled AlNNTs displays a wurtzite structure. The strain energies per atom in AlNNWs are proportional to the inverse of the wire diameter, whereas those in thick-walled AlNNTs are independent of tube diameter but proportional to the inverse of the wall thickness. Thick-walled AlNNTs are energetically comparable to AlNNWs of similar diameter, and both of them are energetically more favorable than single-walled AlNNTs. Both AlNNWs and AlNNTs are wide band gap semiconductors accompanied with surface states located in the band gap of bulk wurtzite AlN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.