We have carried out first-principles calculations to explore the energetics and dynamics of Li in graphdiyne monolayers. The porous structure of graphdiyne enables both in-plane and out-plane diffusion of Li ions with moderate barriers, 0.35–0.52 eV. A unique Li occupation pattern named as a triangular pattern is identified, with Li atoms occupying three symmetric sites in the triangular-like pores. Based on this occupation pattern, the Li storage capacity of single-layer graphdiyne can be as high as LiC3, which is twice the capacity of commonly used graphite (LiC6). With high Li mobility and high storage capacity, this experimentally available porous carbon material is expected to find applications in efficient lithium storage.
Nitrite (NO 2 − ) has been extensively applied in agricultural and industrial products and is often found in various foodstuff, tap water, biological samples and environmental systems. However, NO 2 − as a toxic contaminant probably threaten the human health by producing highly carcinogenic N-nitrosamines. Compared with the traditional analytical techniques, electroanalytical method has considerable advantages such as cost-effective, rapidness, facile operation, and easy miniaturization. Graphene nanocomposites have significant synergistic electrocatalytic effect toward the nitrite redox, which could eventually amplify the electrochemical response signals, and improve the selectivity, sensitivity, and practicability for the nitrite detection in various real samples. The recent developments on graphene-based nitrite electrochemical sensors are reviewed from the view of sensing materials, including graphene, metal nanoparticle/graphene composites, nanostructured metal compound/graphene composites, polymer/graphene composites, MOF/graphene composites, enzyme/graphene composites, MWCNT/graphene composites, and electron mediator/graphene composites. Moreover, the sensing performances including detection ranges, limit of detection (LOD) and sensitivity are tabulated. Finally, the major drawbacks, opportunities and challenges of graphene-based nitrite electrochemical sensors are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.