Mesenchymal stem cells (MSCs) are multilineage cells with the ability to self-renew and differentiate into a variety of cell types, which play key roles in tissue healing and regenerative medicine. Bone marrow-derived mesenchymal stem cells (BMSCs) are the most frequently used stem cells in cell therapy and tissue engineering. However, it is prerequisite for BMSCs to mobilize from bone marrow and migrate into injured tissues during the healing process, through peripheral circulation. The migration of BMSCs is regulated by mechanical and chemical factors in this trafficking process. In this paper, we review the effects of several main regulatory factors on BMSC migration and its underlying mechanism; discuss two critical roles of BMSCs—namely, directed differentiation and the paracrine function—in tissue repair; and provide insight into the relationship between BMSC migration and tissue repair, which may provide a better guide for clinical applications in tissue repair through the efficient regulation of BMSC migration.
We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation 1. EPSCs had enriched molecular signatures of blastomeres and possessed the developmental potency for all embryonic and extraembryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras, and produce primordial germ celllike cells in vitro. Under similar conditions, human ESCs and iPSCs can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Significantly, trophoblast stem cell-like cells can be generated from both human and porcine EPSCs. Our pathwayinhibition paradigm thus opens a new avenue for generating mammalian pluripotent stem cells, and EPSCs present an unique cellular platform for translational research in biotechnology and regenerative medicine.
Nanosilver particles (NSPs), are among the most attractive nanomaterials, and have been widely used in a range of biomedical applications, including diagnosis, treatment, drug delivery, medical device coating, and for personal health care. With the increasing application of NSPs in medical contexts, it is becoming necessary for a better understanding of the mechanisms of NSPs’ biological interactions and their potential toxicity. In this review, we first introduce the synthesis routes of NSPs, including physical, chemical, and biological or green synthesis. Then the unique physiochemical properties of NSPs, such as antibacterial, antifungal, antiviral, and anti-inflammatory activity, are discussed in detail. Further, some recent applications of NSPs in prevention, diagnosis, and treatment in medical fields are described. Finally, potential toxicology considerations of NSPs, both in vitro and in vivo, are also addressed.
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.