Long non-coding RNAs (lncRNAs), HOTAIR has been reported to be upregulated in cervical cancer development and progression. However, SNPs (single nucleotide polymorphisms) in the lncRNAs and their associations with cervical cancer susceptibility have not been reported. In the current study, we hypothesized that SNPs within the lncRNA HOTAIR may influence the risk of cervical cancer. We performed a case-control study including 510 cervical cancer patients (cases) and 713 cancer-free individuals (controls) to investigate the association between three haplotype-tagging SNPs (rs920778, rs1899663 and rs4759314) in the lncRNA HOTAIR and the risk of cervical cancer. We found a strong association between the SNP rs920778 in the intronic enhancer of the HOTAIR and cervical cancer (P<10−4). Moreover, the cervical cancer patients with homozygous TT genotype were significantly associated with tumor-node-metastasis (TNM) stage. In vitro assays with allele-specific reporter constructs indicated that the reporter constructs bearing rs920778T allele conferred elevated reporter gene transcriptional activity when compared to the reporter constructs containing rs920778C allele. Furthermore, HOTAIR expression was higher in cervical cancer tissues than that in corresponding normal tissues, and the high expression was associated with the risk-associated allele T. In summary, our studies provide strong functional evidence that functional SNP rs920778 regulates HOTAIR expression, and may ultimately influence the predisposition for cervical cancer.
Species identification of human and animal blood is of critical importance in the areas of custom inspection, forensic science, wildlife preservation, and veterinary purpose. In this study, the combination of Raman spectroscopy and a recurrent neural network (RNN) is proposed for the discrimination of 20 kinds of blood species including human, poultry, wildlife, and experimental animals. The chemometric multi-classification model based on RNN was established and optimized by hyperparameter tuning and structure selection. The performance scores of the bidirectional RNN model with GRU for 20 kinds of species are as follows: accuracy 97.7%, precision 97.8%, recall 97.8% and F1-score 97.7%. The model resistant to wavenumber drift and cross-instrumental model were also studied for practical application purpose using a subset of Raman spectra by both commercial and laboratory-built Raman spectrometers. The evaluation shows an accuracy of 98.2%. These results indicate that our approach has great potential for blood species identification in real application scenarios.
Background: MicroRNAs are endogenous small noncoding RNAs, which play a critical role in regulating various biological and pathologic processes. Furthermore, miR-301a has been detected to be overly expressed in tumorigenic progression of ovarian cancer. However, the effects of miR-301a on ovarian cancer are still unclear. Objective: The objective of this study is to investigate the molecular mechanisms of miR-301a in epithelial ovarian cancer cells. Methods: The miR-301a expression in ovarian cancer cells was detected. Then, cell proliferation, cell cycle, and apoptosis of the miR-301a-mimic-transfected ovarian cancer cells were determined, as well as the effects of the miR-301a mimic on the PTEN/phosphoinositide 3-kinase (PI3K) signaling pathway were explored. Results: We found that the miR-301a expression levels were markedly upregulated in ovarian cancer tissues and cells, and upregulation of miR-301a-promoted cell viability and proliferation. Our results also showed that the miR-301a-mimic accelerated cell cycle progression of ovarian cancer cells by targeting the CDK4/Cyclin-D1 pathway but not the CDK2/Cyclin-E pathway. Moreover, transfection of the miR-301a mimic into ovarian cancer cells could decrease the PTEN expression while increasing the PI3K and Akt phosphorylation, as compared with the miR-301a inhibitor group and the negative control group. Conclusion: Therefore, miR-301a should be an oncogene in ovarian cancer, and overexpression of miR-301a promoted proliferation of ovarian cancer cells by modulating the PTEN/PI3K/Akt signaling pathway.
Expansion microscopy has enabled super resolution imaging of biological samples. The accurate measurement of expansion factor and distortion typically requires locating and imaging the same region of interest in the sample before and after expansion, which is often time-consuming to achieve. Here we introduce a convenient method for relocation by utilizing isolated porcine glomeruli as landmarks during expansion. Following heat denaturation and proteinase K digestion protocols, the glomeruli exhibit expansion factor of 3.5 to 4 (only 7%-16% less expanded than the hydrogel), and 1% to 2% of relative distortion.Due to its appropriate size of 100 to 300 μm, the location of the glomerulus in the sample are visible to eyes, while its detailed shape only requires bright field microscopy. For expansion factors ranging from 3 to 10, the region in the vicinity of the glomerulus can be easily re-identified, and sometimes allows quantification of expansion factor and distortion under bright field without fluorescent labels.
Background: To establish a novel delivery system of RGD-conjugated resveratrol human serum albumin (HAS) nanoparticles in ovarian cancer therapy. Methods: The nanoparticles system was characterized for physicochemical properties, the stability in the serum and in vitro release. The comparison between RVT injection, HSA-RVT NPs and RGD-HSA-RVT NPs regarding tissue distributions and pharmacokinetics was also carried out using mice as the animal models. Results: The results showed that RGD-HSA-RVT NPs were characterized of small particle size about 128.2 nm and negative zeta potential about −21.42 mV, and drug controlled to release slowly on a biphasic pattern. Compared with control groups, RGD-HSA-RVT NPs showed the higher cellular uptake and cell inhibition rates. In vivo data showed that RGD-HSA-RVT NPs have good tumor enrichment characteristics and a significant difference in tumor inhibition, compared with the control group. Conclusion: RGD-conjugated resveratrol HSA nanoparticles are an ideal drug delivery system, which can play a role in the treatment of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.